CARMA models with random coefficients and inference for renewal sampled Lévy driven moving average processes
Dissertation
Authors
Brandes, DirkPhilip
Referee
Lindner, AlexanderBehme, Anita
Faculties
Fakultät für Mathematik und WirtschaftswissenschaftenInstitutions
Institut für FinanzmathematikAbstract
This thesis covers miscellaneous topics in the field of time series analysis and stochastic processes and consists of four topics where the first two are connected by the appearance of random coefficients and the last two by inference of Lévy driven continuous time moving average processes. In Chapter 2, we consider a random recurrence equation driven by a bivariate i.i.d. sequence. Much attention has been paid to causal strictly stationary solutions of that random recurrence equation, i.e. to strictly stationary solutions of this equation when the start variable is assumed to be independent of the driving sequence. For this case, a complete characterization when such causal solutions exist can be found in literature. We shall dispose of the independence assumption and derive necessary and sufficient conditions for a strictly stationary, not necessarily causal solution of this equation to exist. In Chapter 3, we introduce a continuous time autoregressive moving average process with random Lévy coefficients, termed RCCARMA(p,q) process, of order p and q < p via a subclass of multivariate generalized OrnsteinUhlenbeck processes. Sufficient conditions for the existence of a strictly stationary solution and the existence of moments are obtained. We further investigate second order stationarity properties, calculate the auto covariance function and spectral density, and give sufficient conditions for their existence. In Chapter 4, we study a Lévy driven continuous time moving average process X sampled at random times which follow a renewal structure independent of X. Asymptotic normality of the sample mean, the sample autocovariance, and the sample autocorrelation is established under certain conditions on the kernel and the random times. We compare our results to a classical nonrandom equidistant sampling method and give an application to parameter estimation of the Lévy driven OrnsteinUhlenbeck process. As an extension of the results in Chapter 4, we consider in Chapter 5 multivariate Lévy driven continuous time moving average processes X. We first sample the process X at a nonrandom equidistant sequence and establish the asymptotic normality of the sample mean. Secondly, we use a renewal sampling sequence independent of X and derive also in this case the asymptotic normality of the sample mean.
Date created
2018
Subject Headings
MAProzess [GND]Zentraler Grenzwertsatz [GND]
LévyProzess [GND]
Autokorrelation [GND]
OrnsteinUhlenbeckProzess [GND]
Moving averages [LCSH]
Central limit theorem [LCSH]
Lévy processes [LCSH]
Autocorrelation (Statistics) [LCSH]
OrnsteinUhlenbeck process [LCSH]
Keywords
CARMA processes; Continuous time autoregressive moving average processes; Sample mean; Sample autocorrelation; Sample autocovariance; Renewal sampling; Random coefficients; Multivariate generalized OrnsteinUhlenbeck process; Stationarity; Nonanticipative; Random recurrence equation; Strictly stationary; Second order stationarityDewey Decimal Group
DDC 510 / MathematicsMetadata
Show full item recordCitation example
Brandes, DirkPhilip (2018): CARMA models with random coefficients and inference for renewal sampled Lévy driven moving average processes. Open Access Repositorium der Universität Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU9247
This could also interest you:

Continuous time autoregressive moving average processes with random Levy coefficients
Wissenschaftlicher ArtikelBrandes, DirkPhilip (Universität Ulm, 2017)

Demonstrating the effectiveness of process improvement patterns with mining results
BerichtLohrmann, Matthias; Reichert, ManfredImproving the operational efficiency of processes is an important goal of business process management (BPM). There exist many proposals with regard to process improvement patterns (PIPs) as practices that aim at supporting ... 
Terminal wealth problems in illiquid markets under a drawdown constraint
DissertationWittlinger, MarcThe aim of this thesis is to study terminal wealth problems in illiquid markets. Thereby the illiquidity is modeled by means of discrete exogenous random times, at which trading is possible. Additionally, a drawdown ...