Author | Ishak, Karim | dc.contributor.author |
Author | Appenrodt, Nils | dc.contributor.author |
Author | Dickmann, Jürgen | dc.contributor.author |
Author | Waldschmidt, Christian | dc.contributor.author |
Date of accession | 2018-05-09T10:02:30Z | dc.date.accessioned |
Available in OPARU since | 2018-05-09T10:02:30Z | dc.date.available |
Date of first publication | 2018-05-09 | dc.date.issued |
Abstract | Radar sensors are utilized for detection and classification
purposes in various applications. In order to use
deep learning techniques, lots of training data are required.
Accordingly, lots of measurements and labelling tasks are then
needed. For the purpose of pre-training or examining first ideas
before bringing them into reality, synthetic radar data are of
great help. In this paper, a workflow for automatically generating
radar data of human gestures is presented, starting with creating
the desired animations until synthesizing radar data and getting
the final required dataset. The dataset could then be used for
training deep learning models. A classification scenario applying
this workflow is also introduced. | dc.description.abstract |
Language | en | dc.language.iso |
Publisher | Universität Ulm | dc.publisher |
ID of original publ. | 10.1109/ICMIM.2018.8443559 | dc.relation.uri |
License | Standard | dc.rights |
Link to license text | https://oparu.uni-ulm.de/xmlui/license_v3 | dc.rights.uri |
Keyword | Micro-Doppler | dc.subject |
Keyword | Radar data generation | dc.subject |
Dewey Decimal Group | DDC 620 / Engineering & allied operations | dc.subject.ddc |
LCSH | Machine learning | dc.subject.lcsh |
Title | Human motion training data generation for radar based deep learning applications | dc.title |
Resource type | Beitrag zu einer Konferenz | dc.type |
Version | acceptedVersion | dc.description.version |
DOI | http://dx.doi.org/10.18725/OPARU-6512 | dc.identifier.doi |
URN | http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-6569-9 | dc.identifier.urn |
GND | Deep learning | dc.subject.gnd |
Faculty | Fakultät für Ingenieurwissenschaften, Informatik und Psychologie | uulm.affiliationGeneral |
Institution | Institut für Mikrowellentechnik | uulm.affiliationSpecific |
Peer review | ja | uulm.peerReview |
DCMI Type | Text | uulm.typeDCMI |
Category | Publikationen | uulm.category |
In cooperation with | Daimler AG | uulm.cooperation |
Source - Title of source | 2018 International Conference on Microwaves for Intelligent Mobility (ICMIM) | source.title |
Quellenangabe - Herausgeber | Institute of Electrical and Electronics Engineers | source.contributor.editor1 |
Source - Place of publication | IEEE | source.publisher |
Source - Year | 2018 | source.year |
Source - eISSN | 978-1-5386-1725-0 | source.identifier.eissn |
Conference name | International Conference on Microwaves for Intelligent Mobility (ICMIM) | uulm.conferenceName |
Conference place | München | uulm.conferencePlace |
Conference start date | 2018-04-16 | uulm.conferenceStartDate |
Conference end date | 2018-04-18 | uulm.conferenceEndDate |
Bibliography | uulm | uulm.bibliographie |