Autonomous ultrafast self-healing hydrogels by pH-responsive functional nanofiber gelators as cell matrices
peer-reviewed
Erstveröffentlichung
2018-11-09Autoren
Gačanin, Jasmina
Hedrich, Jana
Sieste, Stefanie
Glasser, Gunnar
Lieberwirth, Ingo
Wissenschaftlicher Artikel
Erschienen in
Advanced Materials ; 31 (2019), 2. - Art.-Nr. 1805044. - ISSN 0935-9648. - eISSN 1521-4095
Link zur Originalveröffentlichung
https://dx.doi.org/10.1002/adma.201805044Fakultäten
Fakultät für NaturwissenschaftenMedizinische Fakultät
Institutionen
Institut für Anorganische Chemie I (Materialien und Katalyse)UKU. Institut für Pharmakologie und Toxikologie
Institut für Physiologische Chemie
Dokumentversion
Veröffentlichte Version (Verlags-PDF)Zusammenfassung
The synthesis of hybrid hydrogels by pH-controlled structural transition with exceptional rheological properties as cellular matrix is reported. “Depsi” peptide sequences are grafted onto a polypeptide backbone that undergo a pH-induced intramolecular O–N–acyl migration at physiological conditions affording peptide nanofibers (PNFs) as supramolecular gelators. The polypeptide–PNF hydrogels are mechanically remarkably robust. They reveal exciting thixotropic behavior with immediate in situ recovery after exposure to various high strains over long periods and self-repair of defects by instantaneous reassembly. High cytocompatibility, convenient functionalization by coassembly, and controlled enzymatic degradation but stability in 2D and 3D cell culture as demonstrated by the encapsulation of primary human umbilical vein endothelial cells and neuronal cells open many attractive opportunities for 3D tissue engineering and other biomedical applications.
EU-Projekt uulm
AD-gut / Alzheimer Disease - gut connection / EC / H2020 / 686271
DFG-Projekt uulm
SFB 1149 Teilprojekt A04 / Zelltypspezifische Trägerproteine für die gezielte pharmakologische Hemmung der Rho-/Aktin-abhängigen Leukozyten-Rekrutierung in den Alveolarraum nach stumpfem Thoraxtrauma / DFG / 251293561
Identification and functional characterization of novel nanofiber-growth factor hybrid molecules for regeneration in a mouse traumatic brain injury model / DFG / 441734479 [KN543/6]
Identification and functional characterization of novel nanofiber-growth factor hybrid molecules for regeneration in a mouse traumatic brain injury model / DFG / 441734479 [KN543/6]
Projekt uulm
Self-assembling peptides as potent cell-type specific enhancers of retroviral gene transfer (extension) / Volkswagenstiftung / 89943
Wird ergänzt durch
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadma.201805044&file=adma201805044-sup-0001-S1.pdfSchlagwörter
[GND]: Zellkultur | Hydrogel | Thixotropie[LCSH]: Cell culture | Colloids | Thixotropy
[Freie Schlagwörter]: cell cultivation | depsi peptide | hydrogels | peptide nanofibers
[DDC Sachgruppe]: DDC 530 / Physics | DDC 540 / Chemistry & allied sciences | DDC 620 / Engineering & allied operations
Metadata
Zur LanganzeigeDOI & Zitiervorlage
Nutzen Sie bitte diesen Identifier für Zitate & Links: http://dx.doi.org/10.18725/OPARU-48926
Gačanin, Jasmina et al. (2023): Autonomous ultrafast self-healing hydrogels by pH-responsive functional nanofiber gelators as cell matrices. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-48926
Verschiedene Zitierstile >