• English
    • Deutsch
  • English 
    • English
    • Deutsch
  • Login
View Item 
  •   Home
  • Universität Ulm
  • Forschungsdaten
  • View Item
  •   Home
  • Universität Ulm
  • Forschungsdaten
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SemanticSpray Dataset

SemanticSprayDataset ... (557.7Mb)
Main zip archive
SemanticSprayDataset ... (1.855Gb)
Split zip archive [1/5]
SemanticSprayDataset ... (1.855Gb)
Split zip archive [2/5]
SemanticSprayDataset ... (1.855Gb)
Split zip archive [3/5]
SemanticSprayDataset ... (1.855Gb)
Split zip archive [4/5]
SemanticSprayDataset ... (1.855Gb)
Split zip archive [5/5]
README.txt (5.073Kb)
Dataset overview and information for the download and extraction.
Erstveröffentlichung
2023-05-26
Data creator
Piroli, Aldi
Dallabetta, Vinzenz
Kopp, Johannes
Walessa, Marc
Meissner, Daniel
et al.
Forschungsdaten


Faculties
Fakultät für Ingenieurwissenschaften, Informatik und Psychologie
Institutions
Institut für Mess-, Regel- und Mikrotechnik
External cooperations
BMW AG
Abstract
LiDARs are one of the main sensors used for autonomous driving applications, providing accurate depth estimation regardless of lighting conditions. However, they are severely affected by adverse weather conditions such as rain, snow, and fog. This dataset provides semantic labels for a subset of the RoadSpray [1] dataset, which contains scenes of vehicles traveling at different speeds on wet surfaces, creating a trailing spray effect. We provide semantic labels for over 200 dynamic scenes, labeling each point in the LiDAR point clouds as background (road, vegetation, buildings, ...), foreground (moving vehicles), and noise (spray, LiDAR artifacts). The dataset toolkit is available at: https://github.com/aldipiroli/semantic_spray_dataset References: [1] C. Linnhoff, L. Elster, P. Rosenberger, and H. Winner, "Road spray in lidar and radar data for individual moving objects," 2022-04. [Online]. DOI: https://doi.org/10.48328/tudatalib-930 Available: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3537
Date created
2022-12
Is supplement to
https://doi.org/10.48328/tudatalib-930
Subject headings
[GND]: Lidar
[LCSH]: Optical radar
[Free subject headings]: Adverse weather conditions | Vehicle road spray
[DDC subject group]: DDC 000 / Computer science, information & general works | DDC 004 / Data processing & computer science
License
CC BY 4.0 International
https://creativecommons.org/licenses/by/4.0/

Metadata
Show full item record

DOI & citation

Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-48815

Piroli, Aldi et al. (2023): SemanticSpray Dataset. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-48815
Citation formatter >



Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsPersonsInstitutionsPublication typesUlm SerialsDewey Decimal ClassesEU projects UlmDFG projects UlmOther projects Ulm

My Account

LoginRegister

Statistics

View Usage Statistics

Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement