SemanticSpray Dataset

SemanticSprayDataset ... (557.7Mb)
Main zip archive
Main zip archive
SemanticSprayDataset ... (1.855Gb)
Split zip archive [1/5]
Split zip archive [1/5]
SemanticSprayDataset ... (1.855Gb)
Split zip archive [2/5]
Split zip archive [2/5]
SemanticSprayDataset ... (1.855Gb)
Split zip archive [3/5]
Split zip archive [3/5]
SemanticSprayDataset ... (1.855Gb)
Split zip archive [4/5]
Split zip archive [4/5]
SemanticSprayDataset ... (1.855Gb)
Split zip archive [5/5]
Split zip archive [5/5]
README.txt (5.073Kb)
Dataset overview and information for the download and extraction.
Dataset overview and information for the download and extraction.
Erstveröffentlichung
2023-05-26Data creator
Piroli, Aldi
Dallabetta, Vinzenz
Kopp, Johannes
Walessa, Marc
Meissner, Daniel
Forschungsdaten
Faculties
Fakultät für Ingenieurwissenschaften, Informatik und PsychologieInstitutions
Institut für Mess-, Regel- und MikrotechnikExternal cooperations
BMW AGAbstract
LiDARs are one of the main sensors used for autonomous driving applications, providing accurate depth estimation regardless of lighting conditions. However, they are severely affected by adverse weather conditions such as rain, snow, and fog. This dataset provides semantic labels for a subset of the RoadSpray [1] dataset, which contains scenes of vehicles traveling at different speeds on wet surfaces, creating a trailing spray effect. We provide semantic labels for over 200 dynamic scenes, labeling each point in the LiDAR point clouds as background (road, vegetation, buildings, ...), foreground (moving vehicles), and noise (spray, LiDAR artifacts).
The dataset toolkit is available at: https://github.com/aldipiroli/semantic_spray_dataset
References:
[1] C. Linnhoff, L. Elster, P. Rosenberger, and H. Winner, "Road spray in lidar and radar data for individual moving objects," 2022-04. [Online]. DOI: https://doi.org/10.48328/tudatalib-930 Available: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3537
Date created
2022-12
Is supplement to
https://doi.org/10.48328/tudatalib-930Subject headings
[GND]: Lidar[LCSH]: Optical radar
[Free subject headings]: Adverse weather conditions | Vehicle road spray
[DDC subject group]: DDC 000 / Computer science, information & general works | DDC 004 / Data processing & computer science
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-48815
Piroli, Aldi et al. (2023): SemanticSpray Dataset. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-48815
Citation formatter >