Quantum trajectory framework for general time-local master equations
peer-reviewed
Erstveröffentlichung
2022-07-16Authors
Brecht, Donvil
Muratore-Ginanneschi, Paolo
Wissenschaftlicher Artikel
Published in
Nature Communications ; 13 (2022). - Art.-Nr. 4140. - eISSN 2041-1723
Link to original publication
https://dx.doi.org/10.1038/s41467-022-31533-8Faculties
Fakultät für NaturwissenschaftenInstitutions
Institut für Komplexe QuantensystemeCenter for Integrated Quantum Science and Technology (IQST)
Document version
published version (publisher's PDF)Abstract
Master equations are one of the main avenues to study open quantum systems. When the master equation is of the Lindblad–Gorini–Kossakowski–Sudarshan form, its solution can be “unraveled in quantum trajectories” i.e., represented as an average over the realizations of a Markov process in the Hilbert space of the system. Quantum trajectories of this type are both an element of quantum measurement theory as well as a numerical tool for systems in large Hilbert spaces. We prove that general time-local and trace-preserving master equations also admit an unraveling in terms of a Markov process in the Hilbert space of the system. The crucial ingredient is to weigh averages by a probability pseudo-measure which we call the “influence martingale”. The influence martingale satisfies a 1d stochastic differential equation enslaved to the ones governing the quantum trajectories. We thus extend the existing theory without increasing the computational complexity.
Is supplemented by
https://www.nature.com/articles/s41467-022-31533-8#Sec17Subject headings
[GND]: Quantenmechanik | Theoretische Physik[LCSH]: Quantum theory | Theoretical physics
[DDC subject group]: DDC 530 / Physics
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-48016
Brecht, Donvil; Muratore-Ginanneschi, Paolo (2023): Quantum trajectory framework for general time-local master equations. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-48016
Citation formatter >