• English
    • Deutsch
  • Deutsch 
    • English
    • Deutsch
  • Einloggen
Dokumentanzeige 
  •   Startseite
  • Universität Ulm
  • Publikationen
  • Dokumentanzeige
  •   Startseite
  • Universität Ulm
  • Publikationen
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Visualization-based neural network introspection

Thumbnail
dissertation.pdf (31.28Mb)
thesis
Erstveröffentlichung
2023-03-21
Autoren
Bäuerle, Alex
Gutachter
Ropinski, Timo
Wattenberg, Martin
Dissertation


Fakultäten
Fakultät für Ingenieurwissenschaften, Informatik und Psychologie
Institutionen
Institut für Medieninformatik
Zusammenfassung
Artificial intelligence (AI) and the use of neural networks have become omnipresent in recent years. Neural networks model complex mathematical functions that can be based on billions, or even trillions, of parameters. At the same time, neural networks make decisions that can deeply impact our lives. Therefore, understanding, testing, and interpreting these networks and their decisions is an integral part of model development and deployment. While there exist introspection techniques that support such understanding, testing, and interpretation, their adoption for diagnosing systems and explaining decisions can be difficult. Current problems with the adoption of introspection techniques are that they are not easily implemented in one's framework, do not work well in combination to create more meaningful analyses, and are difficult to interpret. Through the integration of existing and novel introspection techniques into visualization interfaces, extensive analysis, actionable insights, and effective diagnosis are made widely available. These visualization interfaces can be incorporated into existing development workflows and are designed to support bespoke analysis needs, which makes the interpretation of findings easier. In this thesis, we present published visualization interfaces in three different areas, namely quality assurance, communication, and AI education. These publications include a visualization approach for correcting mislabeled training data, an interface for automatic network figure generation to communicate network architectures, and an educational environment for recurrent neural networks (RNNs). Finally, to unify the diverse landscape of AI visualization interfaces, we also present a framework for composing, reusing, exploring, and sharing such interactive machine learning (ML) interfaces.
Erstellung / Fertigstellung
2022
Kumulative Dissertation mit folgenden Artikeln
• Bäuerle, A., Neumann, H. and Ropinski, T. (2020), Classifier-Guided Visual Correction of Noisy Labels for Image Classification Tasks. Computer Graphics Forum, 39: 195-205. https://doi.org/10.1111/cgf.13973
• Alex Bäuerle, Ángel Alexander Cabrera, Fred Hohman, Megan Maher, David Koski, Xavier Suau, Titus Barik, and Dominik Moritz. 2022. Symphony: Composing Interactive Interfaces for Machine Learning. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI '22). Association for Computing Machinery, New York, NY, USA, Article 210, 1–14. https://doi.org/10.1145/3491102.3502102
• Bäuerle, A., Albus, P., Störk, R. et al. exploRNN: teaching recurrent neural networks through visual exploration. Vis Comput (2022). https://doi.org/10.1007/s00371-022-02593-0
• Alex Bäuerle, Christian van Onzenoodt, and Timo Ropinski. “Net2Vis– A Visual Grammar for Automatically Generating Publication-Tailored CNN Architecture Visualizations.” In: IEEE Transactions on Visualization and Computer Graphics 27.6 (2021), pp. 2980–2991. https://doi.org/10.1109/TVCG.2021.3057483
Schlagwörter
[GND]: Neuronales Netz
[LCSH]: Neural networks (Computer science)
[Freie Schlagwörter]: Neural Network Visualization | Neural Network Introspection | Explainability
[DDC Sachgruppe]: DDC 620 / Engineering & allied operations
Lizenz
CC BY-NC-SA 4.0 International
https://creativecommons.org/licenses/by-nc-sa/4.0

Metadata
Zur Langanzeige

DOI & Zitiervorlage

Nutzen Sie bitte diesen Identifier für Zitate & Links: http://dx.doi.org/10.18725/OPARU-47825

Bäuerle, Alex (2023): Visualization-based neural network introspection. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-47825
Verschiedene Zitierstile >



Leitlinien | kiz Service OPARU | Kontakt
Impressum | Datenschutzerklärung
 

 

Erweiterte Suche

Browsen

Gesamter BestandBereiche & SammlungenPersonenInstitutionenPublikationstypUlmer Reihen & ZeitschriftenDDC-SachgruppenEU-Projekte UlmDFG-Projekte UlmWeitere Projekte Ulm

Mein Benutzerkonto

EinloggenRegistrieren

Statistik

Benutzungsstatistik

Leitlinien | kiz Service OPARU | Kontakt
Impressum | Datenschutzerklärung