Show simple item record

AuthorBertsche, Anjadc.contributor.author
AuthorFleischer, Frankdc.contributor.author
AuthorBeyersmann, Jandc.contributor.author
AuthorNehmiz, Gerharddc.contributor.author
Date of accession2023-03-17T09:47:43Zdc.date.accessioned
Available in OPARU since2023-03-17T09:47:43Zdc.date.available
Date of first publication2017-12-28dc.date.issued
AbstractAfter exploratory drug development, companies face the decision whether to initiate confirmatory trials based on limited efficacy information. This proof-of-concept decision is typically performed after a Phase II trial studying a novel treatment versus either placebo or an active comparator. The article aims to optimize the design of such a proof-of-concept trial with respect to decision making. We incorporate historical information and develop pre-specified decision criteria accounting for the uncertainty of the observed treatment effect. We optimize these criteria based on sensitivity and specificity, given the historical information. Specifically, time-to-event data are considered in a randomized 2-arm trial with additional prior information on the control treatment. The proof-of-concept criterion uses treatment effect size, rather than significance. Criteria are defined on the posterior distribution of the hazard ratio given the Phase II data and the historical control information. Event times are exponentially modeled within groups, allowing for group-specific conjugate prior-to-posterior calculation. While a non-informative prior is placed on the investigational treatment, the control prior is constructed via the meta-analytic-predictive approach. The design parameters including sample size and allocation ratio are then optimized, maximizing the probability of taking the right decision. The approach is illustrated with an example in lung cancer.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseCC BY-NC-ND 4.0 Internationaldc.rights
Link to license texthttps://creativecommons.org/licenses/by-nc-nd/4.0/dc.rights.uri
KeywordProof-of-conceptdc.subject
KeywordGo–NoGo decisiondc.subject
KeywordBayesdc.subject
Keywordtime-to-eventdc.subject
Keywordoperating characteristicsdc.subject
Keywordmeta-analytic-predictive prior distributiondc.subject
Dewey Decimal GroupDDC 500 / Natural sciences & mathematicsdc.subject.ddc
Dewey Decimal GroupDDC 510 / Mathematicsdc.subject.ddc
Dewey Decimal GroupDDC 610 / Medicine & healthdc.subject.ddc
LCSHProof theorydc.subject.lcsh
LCSHBayesian statistical decision theorydc.subject.lcsh
TitleBayesian Phase II optimization for time-to-event data based on historical informationdc.title
Resource typeWissenschaftlicher Artikeldc.type
SWORD Date2020-12-09T19:40:14Zdc.date.updated
VersionpublishedVersiondc.description.version
DOIhttp://dx.doi.org/10.18725/OPARU-47789dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-47865-7dc.identifier.urn
GNDBayes-Verfahrendc.subject.gnd
GNDBeweistheoriedc.subject.gnd
FacultyFakultät für Mathematik und Wirtschaftswissenschaftenuulm.affiliationGeneral
InstitutionInstitut für Statistikuulm.affiliationSpecific
Peer reviewjauulm.peerReview
DCMI TypeTextuulm.typeDCMI
CategoryPublikationenuulm.category
DOI of original publication10.1177/0962280217747310dc.relation1.doi
Source - Title of sourceStatistical Methods in Medical Researchsource.title
Source - Place of publicationSAGE Publicationssource.publisher
Source - Volume28source.volume
Source - Issue4source.issue
Source - Year2019source.year
Source - From page1272source.fromPage
Source - To page1289source.toPage
Source - ISSN0962-2802source.identifier.issn
Source - eISSN1477-0334source.identifier.eissn
WoS000463234000020uulm.identifier.wos
Bibliographyuulmuulm.bibliographie


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record