• English
    • Deutsch
  • Deutsch 
    • English
    • Deutsch
  • Einloggen
Dokumentanzeige 
  •   Startseite
  • Universität Ulm
  • Publikationen
  • Dokumentanzeige
  •   Startseite
  • Universität Ulm
  • Publikationen
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian Phase II optimization for time-to-event data based on historical information

Thumbnail
10.1177_096228021774 ... (722.2Kb)

peer-reviewed

Erstveröffentlichung
2017-12-28
Autoren
Bertsche, Anja
Fleischer, Frank
Beyersmann, Jan
Nehmiz, Gerhard
Wissenschaftlicher Artikel


Erschienen in
Statistical Methods in Medical Research ; 28 (2019), 4. - S. 1272-1289. - ISSN 0962-2802. - eISSN 1477-0334
Link zur Originalveröffentlichung
https://dx.doi.org/10.1177/0962280217747310
Fakultäten
Fakultät für Mathematik und Wirtschaftswissenschaften
Institutionen
Institut für Statistik
Dokumentversion
Veröffentlichte Version (Verlags-PDF)
Zusammenfassung
After exploratory drug development, companies face the decision whether to initiate confirmatory trials based on limited efficacy information. This proof-of-concept decision is typically performed after a Phase II trial studying a novel treatment versus either placebo or an active comparator. The article aims to optimize the design of such a proof-of-concept trial with respect to decision making. We incorporate historical information and develop pre-specified decision criteria accounting for the uncertainty of the observed treatment effect. We optimize these criteria based on sensitivity and specificity, given the historical information. Specifically, time-to-event data are considered in a randomized 2-arm trial with additional prior information on the control treatment. The proof-of-concept criterion uses treatment effect size, rather than significance. Criteria are defined on the posterior distribution of the hazard ratio given the Phase II data and the historical control information. Event times are exponentially modeled within groups, allowing for group-specific conjugate prior-to-posterior calculation. While a non-informative prior is placed on the investigational treatment, the control prior is constructed via the meta-analytic-predictive approach. The design parameters including sample size and allocation ratio are then optimized, maximizing the probability of taking the right decision. The approach is illustrated with an example in lung cancer.
Schlagwörter
[GND]: Bayes-Verfahren | Beweistheorie
[LCSH]: Proof theory | Bayesian statistical decision theory
[Freie Schlagwörter]: Proof-of-concept | Go–NoGo decision | Bayes | time-to-event | operating characteristics | meta-analytic-predictive prior distribution
[DDC Sachgruppe]: DDC 500 / Natural sciences & mathematics | DDC 510 / Mathematics | DDC 610 / Medicine & health
Lizenz
CC BY-NC-ND 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/

Metadata
Zur Langanzeige

DOI & Zitiervorlage

Nutzen Sie bitte diesen Identifier für Zitate & Links: http://dx.doi.org/10.18725/OPARU-47789

Bertsche, Anja et al. (2023): Bayesian Phase II optimization for time-to-event data based on historical information. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-47789
Verschiedene Zitierstile >



Leitlinien | kiz Service OPARU | Kontakt
Impressum | Datenschutzerklärung
 

 

Erweiterte Suche

Browsen

Gesamter BestandBereiche & SammlungenPersonenInstitutionenPublikationstypUlmer Reihen & ZeitschriftenDDC-SachgruppenEU-Projekte UlmDFG-Projekte UlmWeitere Projekte Ulm

Mein Benutzerkonto

EinloggenRegistrieren

Statistik

Benutzungsstatistik

Leitlinien | kiz Service OPARU | Kontakt
Impressum | Datenschutzerklärung