Author | Neuberger, J. W. | dc.contributor.author |
Author | Feiler, Cornelia | dc.contributor.author |
Author | Maier, Helmut | dc.contributor.author |
Author | Schleich, Wolfgang P. | dc.contributor.author |
Date of accession | 2022-12-09T12:39:54Z | dc.date.accessioned |
Available in OPARU since | 2022-12-09T12:39:54Z | dc.date.available |
Date of first publication | 2014-10-14 | dc.date.issued |
Abstract | Abstract
A great many phenomena in physics can be traced back to the zeros of a function or a functional. Eigenvalue or variational problems prevalent in classical as well as quantum mechanics are examples illustrating this statement. Continuous descent methods taken with respect to the proper metric are efficient ways to attack such problems. In particular, the continuous Newton method brings out the lines of constant phase of a complex-valued function. Although the patterns created by the Newton flow are reminiscent of the field lines of electrostatics and magnetostatics they cannot be realized in this way since in general they are not curl-free. We apply the continuous Newton method to the Riemann zeta function and discuss the emerging patterns emphasizing especially the structuring of the non-trivial zeros by the separatrices. This approach might open a new road toward the Riemann hypothesis. | dc.description.abstract |
Language | en | dc.language.iso |
Publisher | Universität Ulm | dc.publisher |
License | CC BY 3.0 | dc.rights |
Link to license text | https://creativecommons.org/licenses/by/3.0/ | dc.rights.uri |
Keyword | Riemann zeta function | dc.subject |
Keyword | continuous Newton method | dc.subject |
Keyword | Newton flow | dc.subject |
Dewey Decimal Group | DDC 530 / Physics | dc.subject.ddc |
LCSH | Functions, Zeta | dc.subject.lcsh |
LCSH | Newton-Raphson method | dc.subject.lcsh |
Title | Newton flow of the Riemann zeta function: separatrices control the appearance of zeros | dc.title |
Resource type | Wissenschaftlicher Artikel | dc.type |
SWORD Date | 2022-02-10T12:57:10Z | dc.date.updated |
Version | publishedVersion | dc.description.version |
DOI | http://dx.doi.org/10.18725/OPARU-46346 | dc.identifier.doi |
URN | http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-46422-8 | dc.identifier.urn |
GND | Riemannsche Zetafunktion | dc.subject.gnd |
GND | Newton-Verfahren | dc.subject.gnd |
Faculty | Fakultät für Mathematik und Wirtschaftswissenschaften | uulm.affiliationGeneral |
Faculty | Fakultät für Naturwissenschaften | uulm.affiliationGeneral |
Institution | Institut für Quantenphysik | uulm.affiliationSpecific |
Institution | Institut für Zahlentheorie und Wahrscheinlichkeitstheorie | uulm.affiliationSpecific |
Peer review | ja | uulm.peerReview |
DCMI Type | Text | uulm.typeDCMI |
Category | Publikationen | uulm.category |
DOI of original publication | 10.1088/1367-2630/16/10/103023 | dc.relation1.doi |
Source - Title of source | New Journal of Physics | source.title |
Source - Place of publication | IOP Publishing | source.publisher |
Source - Volume | 16 | source.volume |
Source - Issue | 10 | source.issue |
Source - Year | 2014 | source.year |
Source - Article number | 103023 | source.articleNumber |
Source - eISSN | 1367-2630 | source.identifier.eissn |
Bibliography | uulm | uulm.bibliographie |
Is Supplemented By | https://cfn-live-content-bucket-iop-org.s3.amazonaws.com/journals/1367-2630/16/10/103023/revision1/NJP500443suppdata.pdf?AWSAccessKeyId=AKIAYDKQL6LTV7YY2HIK&Expires=1671187859&Signature=nHsNvBTVnPg9cZfDNfSHl8CQIVE%3D | dc.relation.isSupplementedBy |