Show simple item record

AuthorSchleuning, Markusdc.contributor.author
AuthorAhmet, Ibbi Y.dc.contributor.author
AuthorVan de Krol, Roeldc.contributor.author
AuthorMay, Matthias M.dc.contributor.author
Date of accession2022-12-08T14:15:39Zdc.date.accessioned
Available in OPARU since2022-12-08T14:15:39Zdc.date.available
Date of first publication2022-06-14dc.date.issued
AbstractDirect photoelectrochemical (PEC) solar water splitting has the potential to be a key element in a sustainable energy supply chain. However, integrated PEC systems based on metal oxides still lack the high efficiencies required for large-scale, economically feasible applications. A main obstacle for the realization of higher solar-to-hydrogen efficiencies is the appropriate design of the semiconductor–catalyst and semiconductor–electrolyte interfaces. Thus, a more accurate understanding of the energy loss mechanisms and the driving forces that determine the charge separation, transport and recombination of electrons and holes in a PEC device would be instrumental for the selection of the most appropriate design routes. In this context we highlight a common misconception within the PEC research community, which is to consider the built-in electrical field at the solid/liquid interface as essential for charge separation. We subsequently emphasize the established viewpoint within the photovoltaic research community that the gradient of the electrochemical potential is the principle driving force for charge separation and efficient solar energy conversion. Based on this realization, we argue that improved contact design in PEC devices should be one of the main research directions in the design of PEC devices. To address this challenge, we take a closer look at how optimized contacts have been constructed so far and present potential design approaches which can be used to further improve the performance of PEC devices.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseCC BY 4.0 Internationaldc.rights
Link to license texthttps://creativecommons.org/licenses/by/4.0/dc.rights.uri
KeywordSURFACE RECOMBINATIONdc.subject
KeywordHYDROGEN-PRODUCTIONdc.subject
KeywordPHOTOVOLTAGEdc.subject
KeywordEFFICIENCYdc.subject
KeywordPHOTOCURRENTdc.subject
Keywordsolar water splittingdc.subject
Dewey Decimal GroupDDC 530 / Physicsdc.subject.ddc
Dewey Decimal GroupDDC 540 / Chemistry & allied sciencesdc.subject.ddc
LCSHSolar cellsdc.subject.lcsh
LCSHHot carriersdc.subject.lcsh
LCSHPerformancedc.subject.lcsh
LCSHElectrolytesdc.subject.lcsh
LCSHPhotocathodesdc.subject.lcsh
LCSHPhotoelectrochemistrydc.subject.lcsh
TitleThe role of selective contacts and built-in field for charge separation and transport in photoelectrochemical devicesdc.title
Resource typeWissenschaftlicher Artikeldc.type
VersionpublishedVersiondc.description.version
DOIhttp://dx.doi.org/10.18725/OPARU-46340dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-46416-6dc.identifier.urn
GNDSolarzelledc.subject.gnd
GNDFotovoltaikdc.subject.gnd
GNDElektrolytdc.subject.gnd
GNDWirkungsgrad  dc.subject.gnd
GNDPhotokathodedc.subject.gnd
GNDFotoelektrochemiedc.subject.gnd
FacultyFakultät für Naturwissenschaftenuulm.affiliationGeneral
InstitutionInstitut für Theoretische Chemieuulm.affiliationSpecific
Peer reviewjauulm.peerReview
DCMI TypeTextuulm.typeDCMI
DCMI TypeImageuulm.typeDCMI
CategoryPublikationenuulm.category
In cooperation withHelmholtz-Zentrum Berlinuulm.cooperation
In cooperation withTechnische Universität Berlinuulm.cooperation
In cooperation withUniversität Tübingenuulm.cooperation
DOI of original publication 10.1039/D2SE00562Jdc.relation1.doi
Source - Title of sourceSustainable Energy & Fuelssource.title
Source - Place of publicationRoyal Society of Chemistrysource.publisher
Source - Volume6source.volume
Source - Issue16source.issue
Source - Year2022source.year
Source - From page3701source.fromPage
Source - To page3716source.toPage
Source - eISSN2398-4902source.identifier.eissn
WoS000818733200001uulm.identifier.wos
Bibliographyuulmuulm.bibliographie
DFG project uulmAufklärung der potenzialabhängigen Struktur von elektrochemischen Grenzflächen mittels Reflexionsanisotropiespektroskopie / DFG / 434023472uulm.projectDFG
DFG project uulmZustands- und Zeitskalenabhängigkeit des Erdklimas vom letzten Glazial bis heute / DFG / 395588486uulm.projectDFG
Project uulmCDR - NETPEC / Verbundprojekt CDR: Negative Emissionen mittels photoelektrochemischer Methoden (NETPEC) - Teilprojekt 1: Einfluss des Lokalklimas auf Produktion und Speicherung der Kohlenstoffprodukte und Analyse der Katalysator-Eigenschaften / BMBF / 01LS2103Auulm.projectOther


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record