The role of selective contacts and built-in field for charge separation and transport in photoelectrochemical devices

peer-reviewed
Erstveröffentlichung
2022-06-14Authors
Schleuning, Markus
Ahmet, Ibbi Y.
Van de Krol, Roel
May, Matthias M.
Wissenschaftlicher Artikel
Published in
Sustainable Energy & Fuels ; 6 (2022), 16. - S. 3701-3716. - eISSN 2398-4902
Link to original publication
https://dx.doi.org/ 10.1039/D2SE00562JFaculties
Fakultät für NaturwissenschaftenInstitutions
Institut für Theoretische ChemieExternal cooperations
Helmholtz-Zentrum BerlinTechnische Universität Berlin
Universität Tübingen
Document version
published version (publisher's PDF)Abstract
Direct photoelectrochemical (PEC) solar water splitting has the potential to be a key element in a sustainable energy supply chain. However, integrated PEC systems based on metal oxides still lack the high efficiencies required for large-scale, economically feasible applications. A main obstacle for the realization of higher solar-to-hydrogen efficiencies is the appropriate design of the semiconductor–catalyst and semiconductor–electrolyte interfaces. Thus, a more accurate understanding of the energy loss mechanisms and the driving forces that determine the charge separation, transport and recombination of electrons and holes in a PEC device would be instrumental for the selection of the most appropriate design routes. In this context we highlight a common misconception within the PEC research community, which is to consider the built-in electrical field at the solid/liquid interface as essential for charge separation. We subsequently emphasize the established viewpoint within the photovoltaic research community that the gradient of the electrochemical potential is the principle driving force for charge separation and efficient solar energy conversion. Based on this realization, we argue that improved contact design in PEC devices should be one of the main research directions in the design of PEC devices. To address this challenge, we take a closer look at how optimized contacts have been constructed so far and present potential design approaches which can be used to further improve the performance of PEC devices.
DFG Project THU
Aufklärung der potenzialabhängigen Struktur von elektrochemischen Grenzflächen mittels Reflexionsanisotropiespektroskopie / DFG / 434023472
Zustands- und Zeitskalenabhängigkeit des Erdklimas vom letzten Glazial bis heute / DFG / 395588486
Zustands- und Zeitskalenabhängigkeit des Erdklimas vom letzten Glazial bis heute / DFG / 395588486
Project uulm
CDR - NETPEC / Verbundprojekt CDR: Negative Emissionen mittels photoelektrochemischer Methoden (NETPEC) - Teilprojekt 1: Einfluss des Lokalklimas auf Produktion und Speicherung der Kohlenstoffprodukte und Analyse der Katalysator-Eigenschaften / BMBF / 01LS2103A
Subject headings
[GND]: Solarzelle | Fotovoltaik | Elektrolyt | Wirkungsgrad | Photokathode | Fotoelektrochemie[LCSH]: Solar cells | Hot carriers | Performance | Electrolytes | Photocathodes | Photoelectrochemistry
[Free subject headings]: SURFACE RECOMBINATION | HYDROGEN-PRODUCTION | PHOTOVOLTAGE | EFFICIENCY | PHOTOCURRENT | solar water splitting
[DDC subject group]: DDC 530 / Physics | DDC 540 / Chemistry & allied sciences
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-46340
Schleuning, Markus et al. (2022): The role of selective contacts and built-in field for charge separation and transport in photoelectrochemical devices. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-46340
Citation formatter >