Author | Kern, Nicolai | dc.contributor.author |
Author | Aguilar, Julian | dc.contributor.author |
Author | Grebner, Timo | dc.contributor.author |
Author | Meinecke, Benedikt | dc.contributor.author |
Author | Waldschmidt, Christian | dc.contributor.author |
Date of accession | 2022-11-29T08:55:51Z | dc.date.accessioned |
Available in OPARU since | 2022-11-29T08:55:51Z | dc.date.available |
Date of first publication | 2022-09-05 | dc.date.issued |
Abstract | Radar-based gesture recognition can play a vital role in autonomous vehicles’ interaction with vulnerable road users (VRUs). However, in automotive scenarios the same gesture produces strongly differing radar responses owed to the wide range of variations such as position, orientation, or ego-motion. Since including all kinds of modifications in a measured dataset is laborious, gesture simulations alleviate the measurement effort and increase the robustness against edge and corner cases. Hence, this paper presents a flexible geometric human target model allowing the direct introduction of a wide range of modifications, while it facilitates the handling of shadowing effects and multiradar constellations. Using the proposed simulation model, a dataset recorded with a radar sensor network consisting of three chirp sequence (CS) radars is resimulated based on motion data simultaneously captured with a stereo video system. Completely substituting the measured by simulated data for training, a convolutional neural network (CNN) classifier still achieves 80.4% cross-validation accuracy on a challenging gesture set,
compared to 89.4% for training on measured data. Moreover, using simulated data the classifier is shown to successfully generalize to new scenarios not observed in measurements. | dc.description.abstract |
Language | en | dc.language.iso |
Publisher | Universität Ulm | dc.publisher |
License | Lizenz A | dc.rights |
Link to license text | https://oparu.uni-ulm.de/xmlui/licenseA_v1 | dc.rights.uri |
Keyword | Data models | dc.subject |
Keyword | Computational modeling | dc.subject |
Keyword | Solid modeling | dc.subject |
Keyword | Ellipsoids | dc.subject |
Keyword | Automotive radar | dc.subject |
Keyword | human target simulation | dc.subject |
Keyword | radar sensor networks | dc.subject |
Dewey Decimal Group | DDC 620 / Engineering & allied operations | dc.subject.ddc |
LCSH | Radar | dc.subject.lcsh |
LCSH | Training | dc.subject.lcsh |
LCSH | Ellipsometry | dc.subject.lcsh |
LCSH | Gesture recognition (Computer science) | dc.subject.lcsh |
Title | Learning on Multistatic Simulation Data for Radar-Based Automotive Gesture Recognition | dc.title |
Resource type | Wissenschaftlicher Artikel | dc.type |
Version | acceptedVersion | dc.description.version |
DOI | http://dx.doi.org/10.18725/OPARU-46148 | dc.identifier.doi |
URN | http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-46224-9 | dc.identifier.urn |
GND | Gestenerkennung | dc.subject.gnd |
GND | Convolutional Neural Network | dc.subject.gnd |
GND | Data Augmentation | dc.subject.gnd |
Faculty | Fakultät für Ingenieurwissenschaften, Informatik und Psychologie | uulm.affiliationGeneral |
Institution | Institut für Mikrowellentechnik | uulm.affiliationSpecific |
Peer review | ja | uulm.peerReview |
DCMI Type | Text | uulm.typeDCMI |
Category | Publikationen | uulm.category |
DOI of original publication | 10.1109/TMTT.2022.3200595 | dc.relation1.doi |
Source - Title of source | IEEE Transactions on Microwave Theory and Techniques | source.title |
Source - Place of publication | Institute of Electrical and Electronics Engineers (IEEE) | source.publisher |
Source - Volume | 70 | source.volume |
Source - Issue | 11 | source.issue |
Source - Year | 2022 | source.year |
Source - From page | 5039 | source.fromPage |
Source - To page | 5050 | source.toPage |
Source - ISSN | 0018-9480 | source.identifier.issn |
Source - eISSN | 1557-9670 | source.identifier.eissn |
Community | Universität Ulm | uulm.community |
Bibliography | uulm | uulm.bibliographie |
Project uulm | INTUITIVER - INTeraktion zwischen aUtomatIsierTen Fahrzeugen und leicht verletzbaren VerkehrsteilnehmERn / MWK Baden-Württemberg | uulm.projectOther |