Show simple item record

AuthorKern, Nicolaidc.contributor.author
AuthorAguilar, Juliandc.contributor.author
AuthorGrebner, Timodc.contributor.author
AuthorMeinecke, Benediktdc.contributor.author
AuthorWaldschmidt, Christiandc.contributor.author
Date of accession2022-11-29T08:55:51Zdc.date.accessioned
Available in OPARU since2022-11-29T08:55:51Zdc.date.available
Date of first publication2022-09-05dc.date.issued
AbstractRadar-based gesture recognition can play a vital role in autonomous vehicles’ interaction with vulnerable road users (VRUs). However, in automotive scenarios the same gesture produces strongly differing radar responses owed to the wide range of variations such as position, orientation, or ego-motion. Since including all kinds of modifications in a measured dataset is laborious, gesture simulations alleviate the measurement effort and increase the robustness against edge and corner cases. Hence, this paper presents a flexible geometric human target model allowing the direct introduction of a wide range of modifications, while it facilitates the handling of shadowing effects and multiradar constellations. Using the proposed simulation model, a dataset recorded with a radar sensor network consisting of three chirp sequence (CS) radars is resimulated based on motion data simultaneously captured with a stereo video system. Completely substituting the measured by simulated data for training, a convolutional neural network (CNN) classifier still achieves 80.4% cross-validation accuracy on a challenging gesture set, compared to 89.4% for training on measured data. Moreover, using simulated data the classifier is shown to successfully generalize to new scenarios not observed in measurements.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseLizenz Adc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/licenseA_v1dc.rights.uri
KeywordData modelsdc.subject
KeywordComputational modelingdc.subject
KeywordSolid modelingdc.subject
KeywordEllipsoidsdc.subject
KeywordAutomotive radardc.subject
Keywordhuman target simulationdc.subject
Keywordradar sensor networksdc.subject
Dewey Decimal GroupDDC 620 / Engineering & allied operationsdc.subject.ddc
LCSHRadardc.subject.lcsh
LCSHTrainingdc.subject.lcsh
LCSHEllipsometrydc.subject.lcsh
LCSHGesture recognition (Computer science)dc.subject.lcsh
TitleLearning on Multistatic Simulation Data for Radar-Based Automotive Gesture Recognitiondc.title
Resource typeWissenschaftlicher Artikeldc.type
VersionacceptedVersiondc.description.version
DOIhttp://dx.doi.org/10.18725/OPARU-46148dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-46224-9dc.identifier.urn
GNDGestenerkennungdc.subject.gnd
GNDConvolutional Neural Networkdc.subject.gnd
GNDData Augmentationdc.subject.gnd
FacultyFakultät für Ingenieurwissenschaften, Informatik und Psychologieuulm.affiliationGeneral
InstitutionInstitut für Mikrowellentechnikuulm.affiliationSpecific
Peer reviewjauulm.peerReview
DCMI TypeTextuulm.typeDCMI
CategoryPublikationenuulm.category
DOI of original publication10.1109/TMTT.2022.3200595dc.relation1.doi
Source - Title of sourceIEEE Transactions on Microwave Theory and Techniquessource.title
Source - Place of publicationInstitute of Electrical and Electronics Engineers (IEEE)source.publisher
Source - Volume70source.volume
Source - Issue11source.issue
Source - Year2022source.year
Source - From page5039source.fromPage
Source - To page5050source.toPage
Source - ISSN0018-9480source.identifier.issn
Source - eISSN1557-9670source.identifier.eissn
CommunityUniversität Ulmuulm.community
Bibliographyuulmuulm.bibliographie
Project uulmINTUITIVER - INTeraktion zwischen aUtomatIsierTen Fahrzeugen und leicht verletzbaren VerkehrsteilnehmERn / MWK Baden-Württemberguulm.projectOther


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record