Author | Happ, Lucas | dc.contributor.author |
Author | Efremov, Maxim A. | dc.contributor.author |
Author | Nha, Hyunuchul | dc.contributor.author |
Author | Schleich, Wolfgang P. | dc.contributor.author |
Date of accession | 2022-11-28T15:28:47Z | dc.date.accessioned |
Available in OPARU since | 2022-11-28T15:28:47Z | dc.date.available |
Date of first publication | 2018-02-20 | dc.date.issued |
Abstract | We show that the expectation value of the operator Ô ≡ exp (−cx̂²) + exp (−cpˆ²) defined by the position and momentum operators x̂ and pˆ with a positive parameter c can serve as a tool to identify quantum non-Gaussian states, that is states that cannot be represented as a mixture of Gaussian states. Our condition can be readily tested employing a highly efficient homodyne detection which unlike quantum-state tomography requires the measurements of only two orthogonal quadratures. We demonstrate that our method is even able to detect quantum non-Gaussian states with positive–definite Wigner functions. This situation cannot be addressed in terms of the negativity of the phase-space distribution. Moreover, we demonstrate that our condition can characterize quantum non-Gaussianity for the class of superposition states consisting of a vacuum and integer multiples of four photons under more than 50 % signal attenuation. | dc.description.abstract |
Language | en | dc.language.iso |
Publisher | Universität Ulm | dc.publisher |
License | CC BY 3.0 | dc.rights |
Link to license text | https://creativecommons.org/licenses/by/3.0/ | dc.rights.uri |
Keyword | Gaussian state | dc.subject |
Keyword | Wigner functions | dc.subject |
Keyword | quantum information | dc.subject |
Keyword | continuous variables | dc.subject |
Keyword | non-Gaussian states | dc.subject |
Keyword | quadrature measurements | dc.subject |
Dewey Decimal Group | DDC 500 / Natural sciences & mathematics | dc.subject.ddc |
Dewey Decimal Group | DDC 530 / Physics | dc.subject.ddc |
LCSH | Gaussian quadrature formulas | dc.subject.lcsh |
Title | Sufficient condition for a quantum state to be genuinely quantum non-Gaussian | dc.title |
Resource type | Wissenschaftlicher Artikel | dc.type |
SWORD Date | 2022-02-11T09:27:35Z | dc.date.updated |
Version | publishedVersion | dc.description.version |
DOI | http://dx.doi.org/10.18725/OPARU-46145 | dc.identifier.doi |
URN | http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-46221-1 | dc.identifier.urn |
GND | Quanteninformation | dc.subject.gnd |
Faculty | Fakultät für Naturwissenschaften | uulm.affiliationGeneral |
Institution | Institut für Quantenphysik | uulm.affiliationSpecific |
Institution | Center for Integrated Quantum Science and Technology (IQST) | uulm.affiliationSpecific |
Peer review | ja | uulm.peerReview |
DCMI Type | Text | uulm.typeDCMI |
Category | Publikationen | uulm.category |
DOI of original publication | 10.1088/1367-2630/aaac25 | dc.relation1.doi |
Source - Title of source | New Journal of Physics | source.title |
Source - Place of publication | IOP Publishing | source.publisher |
Source - Volume | 20 | source.volume |
Source - Issue | 2 | source.issue |
Source - Year | 2018 | source.year |
Source - Article number | 023046 | source.articleNumber |
Source - eISSN | 1367-2630 | source.identifier.eissn |
Community | Fakultät für Naturwissenschaften | uulm.community |
WoS | 000425690200001 | uulm.identifier.wos |
Bibliography | uulm | uulm.bibliographie |
xmlui.metadata.uulm.OAfunding | Open-Access-Förderung durch die Universität Ulm | uulm.OAfunding |