Author | Groß, Axel | dc.contributor.author |
Date of accession | 2022-11-24T10:55:02Z | dc.date.accessioned |
Available in OPARU since | 2022-11-24T10:55:02Z | dc.date.available |
Date of first publication | 2022-11-24 | dc.date.issued |
Abstract | Due to the ever-increasing improvement in computer power and the development of more efficient codes, atomistic first-principles calculations have become an indispensable tool in materials and interface chemistry. They are no longer limited to explanatory purposes but have gained predictive power, so that computational modeling and experiment can collaborate on the same footing. Still, quantum chemical first-principles methods are computationally expensive, and there are certain limitations as far as their scaling behavior in high-performance computing is concerned. Hence computational methods based on machine learning have become increasingly popular as an alternative approach to study materials and interfaces.
Here some success stories of both approaches will be presented and their respective advantages and disadvantages will be critically discussed. | dc.description.abstract |
Language | en | dc.language.iso |
Publisher | Universität Ulm | dc.publisher |
Is part of | http://dx.doi.org/10.18725/OPARU-46164 | dc.relation.ispartof |
License | CC BY 4.0 International | dc.rights |
Link to license text | https://creativecommons.org/licenses/by/4.0/ | dc.rights.uri |
Keyword | materials and interface chemistry | dc.subject |
Keyword | descriptors | dc.subject |
Keyword | electrochemical energy conversion and storage | dc.subject |
Dewey Decimal Group | DDC 620 / Engineering & allied operations | dc.subject.ddc |
LCSH | Quantum chemistry | dc.subject.lcsh |
LCSH | Machine learning | dc.subject.lcsh |
LCSH | Solid-liquid interfaces | dc.subject.lcsh |
Title | Quantum chemistry and machine learning in computational materials and interface chemistry | dc.title |
Resource type | Beitrag zu einer Konferenz | dc.type |
Version | publishedVersion | dc.description.version |
DOI | http://dx.doi.org/10.18725/OPARU-46060 | dc.identifier.doi |
URN | http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-46136-0 | dc.identifier.urn |
GND | Quantenchemie | dc.subject.gnd |
GND | Maschinelles Lernen | dc.subject.gnd |
Institution | Kommunikations- und Informationszentrum (kiz) | uulm.affiliationSpecific |
Peer review | ja | uulm.peerReview |
DCMI Type | Text | uulm.typeDCMI |
Category | Publikationen | uulm.category |
Source - Title of source | Proceedings of the 7th bwHPC Symposium | source.title |
Quellenangabe - Herausgeber | Universität Ulm | source.contributor.editor1 |
Source - Publisher | Ulm | source.publisherPlace |
Source - Volume | 7 | source.volume |
Source - Year | 2022 | source.year |
Source - From page | 17 | source.fromPage |
Source - To page | 22 | source.toPage |
Source - Article number | 4 | source.articleNumber |
Source - ISBN | 978-3-948303-29-7 | source.identifier.isbn |
Conference name | 7th bwHPC Symposium | uulm.conferenceName |
Conference place | Ulm University (online event) | uulm.conferencePlace |
Conference start date | 2021-11-08 | uulm.conferenceStartDate |
Conference end date | 2021-11-08 | uulm.conferenceEndDate |
Bibliography | uulm | uulm.bibliographie |
DFG project uulm | HPC Forschungscluster (bwForCluster) Computergestützte Chemie und Quantenwissenschaften / DFG / 405998092 [INST 40/575-1 FUGG] | uulm.projectDFG |
DFG project uulm | JUSTUS 2 / HPC Forschungscluster (bwForCluster) Computergestützte Chemie und Quantenwissenschaften / DFG / 405998092 [INST 40/467-1 FUGG] | uulm.projectDFG |
DFG project uulm | EXC 2154 / POLiS / POLiS - Post Lithium Storage Cluster of Excellence / DFG / 390874152 | uulm.projectDFG |