Quantum chemistry and machine learning in computational materials and interface chemistry
Beitrag zu einer Konferenz
Published in
Proceedings of the 7th bwHPC Symposium ; 7 (2022). - S. 17-22. - Art.-Nr. 4. - ISBN 978-3-948303-29-7
Institutions
Kommunikations- und Informationszentrum (kiz)Document version
published version (publisher's PDF)Conference
7th bwHPC Symposium, 2021-11-08 - 2021-11-08, Ulm University (online event)
Abstract
Due to the ever-increasing improvement in computer power and the development of more efficient codes, atomistic first-principles calculations have become an indispensable tool in materials and interface chemistry. They are no longer limited to explanatory purposes but have gained predictive power, so that computational modeling and experiment can collaborate on the same footing. Still, quantum chemical first-principles methods are computationally expensive, and there are certain limitations as far as their scaling behavior in high-performance computing is concerned. Hence computational methods based on machine learning have become increasingly popular as an alternative approach to study materials and interfaces.
Here some success stories of both approaches will be presented and their respective advantages and disadvantages will be critically discussed.
DFG Project THU
HPC Forschungscluster (bwForCluster) Computergestützte Chemie und Quantenwissenschaften / DFG / 405998092 [INST 40/575-1 FUGG]
JUSTUS 2 / HPC Forschungscluster (bwForCluster) Computergestützte Chemie und Quantenwissenschaften / DFG / 405998092 [INST 40/467-1 FUGG]
EXC 2154 / POLiS / POLiS - Post Lithium Storage Cluster of Excellence / DFG / 390874152
JUSTUS 2 / HPC Forschungscluster (bwForCluster) Computergestützte Chemie und Quantenwissenschaften / DFG / 405998092 [INST 40/467-1 FUGG]
EXC 2154 / POLiS / POLiS - Post Lithium Storage Cluster of Excellence / DFG / 390874152
Is part of
Subject headings
[GND]: Quantenchemie | Maschinelles Lernen[LCSH]: Quantum chemistry | Machine learning | Solid-liquid interfaces
[Free subject headings]: materials and interface chemistry | descriptors | electrochemical energy conversion and storage
[DDC subject group]: DDC 620 / Engineering & allied operations
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-46060
Groß, Axel (2022): Quantum chemistry and machine learning in computational materials and interface chemistry. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-46060
Citation formatter >