Show simple item record

AuthorNussenzveig Lopes, Helena J.dc.contributor.author
AuthorSeis, Christiandc.contributor.author
AuthorWiedemann, Emildc.contributor.author
Date of accession2022-11-24T10:54:04Zdc.date.accessioned
Available in OPARU since2022-11-24T10:54:04Zdc.date.available
Date of first publication2021-05-07dc.date.issued
AbstractWe show strong convergence of the vorticities in the vanishing viscosity limit for the incompressible Navier–Stokes equations on the two-dimensional torus, assuming only that the initial vorticity of the limiting Euler equations is in Lp for some p > 1. This substantially extends a recent result of Constantin, Drivas and Elgindi, who proved strong convergence in the case p = ∞. Our proof, which relies on the classical renormalisation theory of DiPerna–Lions, is surprisingly simple.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseCC BY 3.0dc.rights
Link to license texthttps://creativecommons.org/licenses/by/3.0/dc.rights.uri
Keyword2D incompressible Euler equationsdc.subject
Keywordinviscid limitdc.subject
Keywordunbounded vorticitydc.subject
Keyword35Q31, 35Q30, 35D30dc.subject
Dewey Decimal GroupDDC 510 / Mathematicsdc.subject.ddc
Dewey Decimal GroupDDC 530 / Physicsdc.subject.ddc
LCSHRenormalization (Physics)dc.subject.lcsh
TitleOn the vanishing viscosity limit for 2D incompressible flows with unbounded vorticitydc.title
Resource typeWissenschaftlicher Artikeldc.type
SWORD Date2022-02-04T11:58:10Zdc.date.updated
VersionpublishedVersiondc.description.version
DOIhttp://dx.doi.org/10.18725/OPARU-46059dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-46135-5dc.identifier.urn
GNDRenormierungdc.subject.gnd
FacultyFakultät für Mathematik und Wirtschaftswissenschaftenuulm.affiliationGeneral
InstitutionInstitut für Angewandte Analysisuulm.affiliationSpecific
Peer reviewjauulm.peerReview
DCMI TypeTextuulm.typeDCMI
CategoryPublikationenuulm.category
DOI of original publication10.1088/1361-6544/abe51fdc.relation1.doi
Source - Title of sourceNonlinearitysource.title
Source - Place of publicationIOP Publishingsource.publisher
Source - Volume34source.volume
Source - Issue5source.issue
Source - Year2021source.year
Source - From page3112source.fromPage
Source - To page3121source.toPage
Source - ISSN0951-7715source.identifier.issn
Source - eISSN1361-6544source.identifier.eissn
WoS000649636300001uulm.identifier.wos
Bibliographyuulmuulm.bibliographie


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record