Author | Nussenzveig Lopes, Helena J. | dc.contributor.author |
Author | Seis, Christian | dc.contributor.author |
Author | Wiedemann, Emil | dc.contributor.author |
Date of accession | 2022-11-24T10:54:04Z | dc.date.accessioned |
Available in OPARU since | 2022-11-24T10:54:04Z | dc.date.available |
Date of first publication | 2021-05-07 | dc.date.issued |
Abstract | We show strong convergence of the vorticities in the vanishing viscosity limit for the incompressible Navier–Stokes equations on the two-dimensional torus, assuming only that the initial vorticity of the limiting Euler equations is in Lp for some p > 1. This substantially extends a recent result of Constantin, Drivas and Elgindi, who proved strong convergence in the case p = ∞. Our proof, which relies on the classical renormalisation theory of DiPerna–Lions, is surprisingly simple. | dc.description.abstract |
Language | en | dc.language.iso |
Publisher | Universität Ulm | dc.publisher |
License | CC BY 3.0 | dc.rights |
Link to license text | https://creativecommons.org/licenses/by/3.0/ | dc.rights.uri |
Keyword | 2D incompressible Euler equations | dc.subject |
Keyword | inviscid limit | dc.subject |
Keyword | unbounded vorticity | dc.subject |
Keyword | 35Q31, 35Q30, 35D30 | dc.subject |
Dewey Decimal Group | DDC 510 / Mathematics | dc.subject.ddc |
Dewey Decimal Group | DDC 530 / Physics | dc.subject.ddc |
LCSH | Renormalization (Physics) | dc.subject.lcsh |
Title | On the vanishing viscosity limit for 2D incompressible flows with unbounded vorticity | dc.title |
Resource type | Wissenschaftlicher Artikel | dc.type |
SWORD Date | 2022-02-04T11:58:10Z | dc.date.updated |
Version | publishedVersion | dc.description.version |
DOI | http://dx.doi.org/10.18725/OPARU-46059 | dc.identifier.doi |
URN | http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-46135-5 | dc.identifier.urn |
GND | Renormierung | dc.subject.gnd |
Faculty | Fakultät für Mathematik und Wirtschaftswissenschaften | uulm.affiliationGeneral |
Institution | Institut für Angewandte Analysis | uulm.affiliationSpecific |
Peer review | ja | uulm.peerReview |
DCMI Type | Text | uulm.typeDCMI |
Category | Publikationen | uulm.category |
DOI of original publication | 10.1088/1361-6544/abe51f | dc.relation1.doi |
Source - Title of source | Nonlinearity | source.title |
Source - Place of publication | IOP Publishing | source.publisher |
Source - Volume | 34 | source.volume |
Source - Issue | 5 | source.issue |
Source - Year | 2021 | source.year |
Source - From page | 3112 | source.fromPage |
Source - To page | 3121 | source.toPage |
Source - ISSN | 0951-7715 | source.identifier.issn |
Source - eISSN | 1361-6544 | source.identifier.eissn |
WoS | 000649636300001 | uulm.identifier.wos |
Bibliography | uulm | uulm.bibliographie |