• English
    • Deutsch
  • English 
    • English
    • Deutsch
  • Login
View Item 
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the vanishing viscosity limit for 2D incompressible flows with unbounded vorticity

Thumbnail
non_34_5_3112.pdf (361.4Kb)

peer-reviewed

Erstveröffentlichung
2021-05-07
Authors
Nussenzveig Lopes, Helena J.
Seis, Christian
Wiedemann, Emil
Wissenschaftlicher Artikel


Published in
Nonlinearity ; 34 (2021), 5. - S. 3112-3121. - ISSN 0951-7715. - eISSN 1361-6544
Link to original publication
https://dx.doi.org/10.1088/1361-6544/abe51f
Faculties
Fakultät für Mathematik und Wirtschaftswissenschaften
Institutions
Institut für Angewandte Analysis
Document version
published version (publisher's PDF)
Abstract
We show strong convergence of the vorticities in the vanishing viscosity limit for the incompressible Navier–Stokes equations on the two-dimensional torus, assuming only that the initial vorticity of the limiting Euler equations is in Lp for some p > 1. This substantially extends a recent result of Constantin, Drivas and Elgindi, who proved strong convergence in the case p = ∞. Our proof, which relies on the classical renormalisation theory of DiPerna–Lions, is surprisingly simple.
Subject headings
[GND]: Renormierung
[LCSH]: Renormalization (Physics)
[Free subject headings]: 2D incompressible Euler equations | inviscid limit | unbounded vorticity | 35Q31, 35Q30, 35D30
[DDC subject group]: DDC 510 / Mathematics | DDC 530 / Physics
License
CC BY 3.0
https://creativecommons.org/licenses/by/3.0/

Metadata
Show full item record

DOI & citation

Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-46059

Nussenzveig Lopes, Helena J.; Seis, Christian; Wiedemann, Emil (2022): On the vanishing viscosity limit for 2D incompressible flows with unbounded vorticity. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-46059
Citation formatter >



Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsPersonsInstitutionsPublication typesUlm SerialsDewey Decimal ClassesEU projects UlmDFG projects UlmOther projects Ulm

My Account

LoginRegister

Statistics

View Usage Statistics

Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement