On the vanishing viscosity limit for 2D incompressible flows with unbounded vorticity
peer-reviewed
Erstveröffentlichung
2021-05-07Authors
Nussenzveig Lopes, Helena J.
Seis, Christian
Wiedemann, Emil
Wissenschaftlicher Artikel
Published in
Nonlinearity ; 34 (2021), 5. - S. 3112-3121. - ISSN 0951-7715. - eISSN 1361-6544
Link to original publication
https://dx.doi.org/10.1088/1361-6544/abe51fFaculties
Fakultät für Mathematik und WirtschaftswissenschaftenInstitutions
Institut für Angewandte AnalysisDocument version
published version (publisher's PDF)Abstract
We show strong convergence of the vorticities in the vanishing viscosity limit for the incompressible Navier–Stokes equations on the two-dimensional torus, assuming only that the initial vorticity of the limiting Euler equations is in Lp for some p > 1. This substantially extends a recent result of Constantin, Drivas and Elgindi, who proved strong convergence in the case p = ∞. Our proof, which relies on the classical renormalisation theory of DiPerna–Lions, is surprisingly simple.
Subject headings
[GND]: Renormierung[LCSH]: Renormalization (Physics)
[Free subject headings]: 2D incompressible Euler equations | inviscid limit | unbounded vorticity | 35Q31, 35Q30, 35D30
[DDC subject group]: DDC 510 / Mathematics | DDC 530 / Physics
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-46059
Nussenzveig Lopes, Helena J.; Seis, Christian; Wiedemann, Emil (2022): On the vanishing viscosity limit for 2D incompressible flows with unbounded vorticity. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-46059
Citation formatter >