Show simple item record

AuthorFuchs, Elke Monikadc.contributor.author
Date of accession2017-10-18T14:24:06Zdc.date.accessioned
Available in OPARU since2017-10-18T14:24:06Zdc.date.available
Year of creation2017dc.date.created
Date of first publication2017-10-18dc.date.issued
AbstractThe thesis is divided into two parts. The first part deals with t-perfect graphs. A graph is called t-perfect if its stable set polytope is fully described by non-negativity, edge and odd-cycle constraints. We give characterisations of P5-free graphs, quadrangulations and triangulations of the projective plane concerning t-perfection. The second part is about cycle decomposition of graphs and Hajós’ conjecture. We verify the conjecture for Eulerian graphs of pathwidth at most 6.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseStandarddc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/license_v3dc.rights.uri
Keywordt-perfectiondc.subject
KeywordHajós’ conjecturedc.subject
KeywordCycle decompositiondc.subject
Dewey Decimal GroupDDC 510 / Mathematicsdc.subject.ddc
LCSHDecomposition (Mathematics)dc.subject.lcsh
LCSHGraph theorydc.subject.lcsh
TitleCycle decompositions and t-perfect graphsdc.title
Resource typeDissertationdc.type
Date of acceptance2017-09-26dcterms.dateAccepted
RefereeBruhn-Fujimoto, Henningdc.contributor.referee
RefereeRautenbach, Dieterdc.contributor.referee
DOIhttp://dx.doi.org/10.18725/OPARU-4529dc.identifier.doi
PPN1002623650dc.identifier.ppn
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-4568-0dc.identifier.urn
GNDGraphentheoriedc.subject.gnd
GNDTopologische Graphentheoriedc.subject.gnd
GNDKreis <Graphentheorie>dc.subject.gnd
GNDPolytopdc.subject.gnd
GNDPerfekter Graphdc.subject.gnd
FacultyFakultät für Mathematik und Wirtschaftswissenschaftenuulm.affiliationGeneral
InstitutionInstitut für Optimierung und Operations Researchuulm.affiliationSpecific
Shelfmark print versionW: W-H 15.295uulm.shelfmark
Grantor of degreeFakultät für Mathematik und Wirtschaftswissenschaftenuulm.thesisGrantor
DCMI TypeTextuulm.typeDCMI
TypeErstveröffentlichunguulm.veroeffentlichung
CategoryPublikationenuulm.category
Bibliographyuulmuulm.bibliographie


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record