Show simple item record

AuthorMertens, Max Bastiandc.contributor.author
AuthorMüller, Johannesdc.contributor.author
AuthorBuchholz, Michaeldc.contributor.author
Date of accession2022-10-24T09:06:38Zdc.date.accessioned
Available in OPARU since2022-10-24T09:06:38Zdc.date.available
Date of first publication2022-07-19dc.date.issued
AbstractIntersections are among the scenarios that are most crucial for efficiency and traffic flow on roads. Several approaches to traffic control at intersections exist, each with its own advantages and drawbacks. These days, wireless connections between road users, automated vehicles, and intelligent infrastructure enable new ways of coordinating traffic. However, the gradual deployment of those advanced technologies leads to a heterogeneous mixture of partially automated, connected, and legacy vehicles. Planning and coordinating maneuvers for this mixed traffic is a challenge and subject to current research, as it can achieve significant efficiency improvements in those scenarios. In this paper, we propose a new maneuver planning system for cooperative connected vehicles in mixed traffic at unsignalized intersections, which often occur in urban areas. Our system consists of a probabilistic multi-modal prediction based on a driver model and an efficient optimization algorithm to find the best maneuvers. We present the functionality of our approach and evaluate the impact on traffic efficiency using simulations of two different intersection layouts at various rates of cooperative vehicle penetration.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseLizenz Adc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/licenseA_v1dc.rights.uri
KeywordKooperatives Fahrendc.subject
KeywordVernetzte Fahrzeugedc.subject
KeywordVehicle-to-infrastructuredc.subject
Dewey Decimal GroupDDC 620 / Engineering & allied operationsdc.subject.ddc
LCSHAutomated vehiclesdc.subject.lcsh
TitleCooperative Maneuver Planning for Mixed Traffic at Unsignalized Intersections Using Probabilistic Predictionsdc.title
Resource typeBeitrag zu einer Konferenzdc.type
VersionacceptedVersiondc.description.version
DOIhttp://dx.doi.org/10.18725/OPARU-45416dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-45492-6dc.identifier.urn
GNDCar-to-Car-Kommunikationdc.subject.gnd
FacultyFakultät für Ingenieurwissenschaften, Informatik und Psychologieuulm.affiliationGeneral
InstitutionInstitut für Mess-, Regel- und Mikrotechnikuulm.affiliationSpecific
Peer reviewjauulm.peerReview
DCMI TypeTextuulm.typeDCMI
CategoryPublikationenuulm.category
DOI of original publication10.1109/IV51971.2022.9827300dc.relation1.doi
Source - Title of source2022 IEEE Intelligent Vehicles Symposium (IV)source.title
Source - Place of publicationInstitute of Electrical and Electronics Engineers (IEEE)source.publisher
Source - Volume4source.volume
Source - Year2022source.year
Source - From page1174source.fromPage
Source - To page1180source.toPage
Source - ISBN978-1-6654-8821-1source.identifier.isbn
Source - ISBN978-1-6654-8822-8source.identifier.isbn
Conference nameIEEE Intelligent Vehicles Symposium (IV)uulm.conferenceName
Conference placeAachen, Germanyuulm.conferencePlace
Conference start date2022-06-05uulm.conferenceStartDate
Conference end date2022-06-09uulm.conferenceEndDate
WoS000854106700165uulm.identifier.wos
Bibliographyuulmuulm.bibliographie
Project uulmLUKAS / Verbundprojekt: LUKAS - Lokales Umfeldmodell für das kooperative, automatisierte Fahren in komplexen Verkehrssituationen; Teilvorhaben: Infrastrukturseite Datenverarbeitung und kooperative Handlungsplanung / BMWi / 19A20004Fuulm.projectOther


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record