More recent version available under http://dx.doi.org/10.18725/OPARU-17162
Krümmungen und Indexsätze - auf den Spuren von Gauß-Bonnet, Cartan, Atiyah-Singer und Witten. Eine Einführung in Geometrie und Topologie für Physiker.

gauss_bonnet.pdf (4.968Mb)
634 S., 5.0 MB
634 S., 5.0 MB
Erstveröffentlichung
2017-06-30Authors
Schiekel, Bernhard
Buch
Faculties
Fakultät für NaturwissenschaftenEdition
1. Auflage
Abstract
„Krümmungen und Indexsätze - auf den Spuren von Gauß-Bonnet, Cartan, Atiyah-Singer und Witten. Eine Einführung in Geometrie und Topologie für Physiker.“
This publication is a propaedeutic monograph about Gauss-Bonnet theorems and Atiyah-Singer indextheorems (ASI). Prerequisites are advanced undergraduate level in mathematical physics and some interest and time. Topics are the development of the notions of curvature and topological invariants through the ages and their application to physics.
The beginnings in this field were given by Euklid, Archimedes, Harriot, Girard, Newton, Frenet-Serret. Next we come to Euler with his topological invariant 'Euler charcteristic', Gauss & Bonnet with their theory of 2-dimensional surfaces and Riemann with his 'Differential Geometry'. Then the story goes on with 'Homotopy', 'Simplicial Homology', 'Singular Homology', 'Cohomology', 'Hodge theory', 'Lie-Groups', 'Fibre Bundles', 'Gauge theory', 'Characteristic Classes' until a pathintegral-proof of the ASI for the chiral euklidean Dirac-Operator á la Witten et al. We owe all this (and much more) to Élie Cartan, Poincaré, Einstein, Hopf, Brower, de Rham, Hodge, Lie, Lorentz, Dirac, Ehresmann, Yang & Mills, Chern, Weil, Pontrjagin, Todd, Hirzebruch, Atiyah & Singer and Witten.
Our motto in the words of Spivak is: „All the way with Gauss-Bonnet“.
Due to the didactical intention of this introduction all proofs are worked out in details. So, enjoy yourself! :-)
Date created
2017-06-30
Later version(s)
http://dx.doi.org/10.18725/OPARU-17162Subject headings
[LCSH]: Topology | Mathematical physics | Geometry, differential[Free subject headings]: Gauss-Bonnet Theorem | Atiyan-Singer Theorem | Physics
[DDC subject group]: DDC 530 / Physics
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-4419
Schiekel, Bernhard (2017): Krümmungen und Indexsätze - auf den Spuren von Gauß-Bonnet, Cartan, Atiyah-Singer und Witten.
Eine Einführung in Geometrie und Topologie für Physiker.. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-4419
Citation formatter >