Show simple item record

AuthorClark, Simondc.contributor.author
AuthorMainar, Aroa Ramosdc.contributor.author
AuthorIruin, Elenadc.contributor.author
AuthorColmenares, Luis Césardc.contributor.author
AuthorBlázquez, Jose Albertodc.contributor.author
AuthorTolchard, Julian Richarddc.contributor.author
AuthorJusys, Zenonasdc.contributor.author
AuthorHorstmann, Birgerdc.contributor.author
Date of accession2022-08-24T11:41:51Zdc.date.accessioned
Available in OPARU since2022-08-24T11:41:51Zdc.date.available
Date of first publication2020-01-30dc.date.issued
AbstractAqueous zinc–air batteries (ZABs) are a low-cost, safe, and sustainable technology for stationary energy storage. ZABs with pH-buffered near-neutral electrolytes have the potential for longer lifetime compared to traditional alkaline ZABs due to the slower absorption of carbonates at nonalkaline pH values. However, existing near-neutral electrolytes often contain halide salts, which are corrosive and threaten the precipitation of ZnO as the dominant discharge product. This paper presents a method for designing halide-free aqueous ZAB electrolytes using thermodynamic descriptors to computationally screen components. The dynamic performance of a ZAB with one possible halide-free aqueous electrolyte based on organic salts is simulated using an advanced method of continuum modeling, and the results are validated by experiments. X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy measurements of Zn electrodes show that ZnO is the dominant discharge product, and operando pH measurements confirm the stability of the electrolyte pH during cell cycling. Long-term full cell cycling tests are performed, and rotating ring disk electrode measurements elucidate the mechanism of oxygen reduction reaction and oxygen evolution reaction. The analysis shows that aqueous electrolytes containing organic salts could be a promising field of research for zinc-based batteries, due to their Zn2+ chelating and pH buffering properties. The remaining challenges including the electrochemical stability of the electrolyte components are discussed.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseCC BY 4.0 Internationaldc.rights
Link to license texthttps://creativecommons.org/licenses/by/4.0/dc.rights.uri
Keywordaqueous near‐neutral electrolytesdc.subject
Keywordorganic saltsdc.subject
Keywordtheory and validationdc.subject
Keywordzinc–air batteriesdc.subject
Dewey Decimal GroupDDC 540 / Chemistry & allied sciencesdc.subject.ddc
LCSHThermodynamicsdc.subject.lcsh
TitleDesigning aqueous organic electrolytes for zinc–air batteries: method, simulation, and validationdc.title
Resource typeWissenschaftlicher Artikeldc.type
SWORD Date2020-12-09T19:36:30Zdc.date.updated
VersionpublishedVersiondc.description.version
DOIhttp://dx.doi.org/10.18725/OPARU-44297dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-44373-6dc.identifier.urn
GNDThermodynamikdc.subject.gnd
GNDZink-Luft-Akkumulatordc.subject.gnd
FacultyFakultät für Naturwissenschaftenuulm.affiliationGeneral
InstitutionHelmholtz-Institut Ulmuulm.affiliationSpecific
InstitutionInstitut für Oberflächenchemie und Katalyseuulm.affiliationSpecific
Peer reviewjauulm.peerReview
DCMI TypeTextuulm.typeDCMI
CategoryPublikationenuulm.category
DOI of original publication10.1002/aenm.201903470dc.relation1.doi
Source - Title of sourceAdvanced Energy Materialssource.title
Source - Place of publicationWileysource.publisher
Source - Volume10source.volume
Source - Issue10source.issue
Source - Year2020source.year
Source - Article number1903470source.articleNumber
Source - ISSN1614-6832source.identifier.issn
Source - eISSN1614-6840source.identifier.eissn
Bibliographyuulmuulm.bibliographie
Is Supplemented Byhttps://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Faenm.201903470&file=aenm201903470-sup-0001-SuppMat.pdfdc.relation.isSupplementedBy
DFG project uulmNovel Electrode Materials Based Zn-Air Batteries for Energy Storage: From Fundamental Aspects to System Engineering / DFG / 339689134 [BE 1201/22-1]uulm.projectDFG
DFG project uulmJUSTUS 2 / HPC Forschungscluster (bwForCluster) Computergestützte Chemie und Quantenwissenschaften / DFG / 405998092uulm.projectDFG


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record