Designing aqueous organic electrolytes for zinc–air batteries: method, simulation, and validation
peer-reviewed
Erstveröffentlichung
2020-01-30Autoren
Clark, Simon
Mainar, Aroa Ramos
Iruin, Elena
Colmenares, Luis César
Blázquez, Jose Alberto
Wissenschaftlicher Artikel
Erschienen in
Advanced Energy Materials ; 10 (2020), 10. - Art.-Nr. 1903470. - ISSN 1614-6832. - eISSN 1614-6840
Link zur Originalveröffentlichung
https://dx.doi.org/10.1002/aenm.201903470Fakultäten
Fakultät für NaturwissenschaftenInstitutionen
Helmholtz-Institut UlmInstitut für Oberflächenchemie und Katalyse
Dokumentversion
Veröffentlichte Version (Verlags-PDF)Zusammenfassung
Aqueous zinc–air batteries (ZABs) are a low-cost, safe, and sustainable technology for stationary energy storage. ZABs with pH-buffered near-neutral electrolytes have the potential for longer lifetime compared to traditional alkaline ZABs due to the slower absorption of carbonates at nonalkaline pH values. However, existing near-neutral electrolytes often contain halide salts, which are corrosive and threaten the precipitation of ZnO as the dominant discharge product. This paper presents a method for designing halide-free aqueous ZAB electrolytes using thermodynamic descriptors to computationally screen components. The dynamic performance of a ZAB with one possible halide-free aqueous electrolyte based on organic salts is simulated using an advanced method of continuum modeling, and the results are validated by experiments. X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy measurements of Zn electrodes show that ZnO is the dominant discharge product, and operando pH measurements confirm the stability of the electrolyte pH during cell cycling. Long-term full cell cycling tests are performed, and rotating ring disk electrode measurements elucidate the mechanism of oxygen reduction reaction and oxygen evolution reaction. The analysis shows that aqueous electrolytes containing organic salts could be a promising field of research for zinc-based batteries, due to their Zn2+ chelating and pH buffering properties. The remaining challenges including the electrochemical stability of the electrolyte components are discussed.
DFG-Projekt uulm
Novel Electrode Materials Based Zn-Air Batteries for Energy Storage: From Fundamental Aspects to System Engineering / DFG / 339689134 [BE 1201/22-1]
JUSTUS 2 / HPC Forschungscluster (bwForCluster) Computergestützte Chemie und Quantenwissenschaften / DFG / 405998092
JUSTUS 2 / HPC Forschungscluster (bwForCluster) Computergestützte Chemie und Quantenwissenschaften / DFG / 405998092
Wird ergänzt durch
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Faenm.201903470&file=aenm201903470-sup-0001-SuppMat.pdfSchlagwörter
[GND]: Thermodynamik | Zink-Luft-Akkumulator[LCSH]: Thermodynamics
[Freie Schlagwörter]: aqueous near‐neutral electrolytes | organic salts | theory and validation | zinc–air batteries
[DDC Sachgruppe]: DDC 540 / Chemistry & allied sciences
Metadata
Zur LanganzeigeDOI & Zitiervorlage
Nutzen Sie bitte diesen Identifier für Zitate & Links: http://dx.doi.org/10.18725/OPARU-44297
Clark, Simon et al. (2022): Designing aqueous organic electrolytes for zinc–air batteries: method, simulation, and validation. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-44297
Verschiedene Zitierstile >