Show simple item record

Authorvon Kolzenberg, Larsdc.contributor.author
AuthorLatz, Arnulfdc.contributor.author
AuthorHorstmann, Birgerdc.contributor.author
Date of accession2022-08-15T09:09:50Zdc.date.accessioned
Available in OPARU since2022-08-15T09:09:50Zdc.date.available
Date of first publication2021-11-23dc.date.issued
AbstractSilicon anodes exhibit large volume changes during cycling. Thus, they suffer from accelerated capacity fade due to fracture and regrowth of the solid electrolyte interphase (SEI). In this study, we develop a novel model, which consistently couples electrochemistry and mechanics within electrode particle and SEI. Thereby, we analyze mechanically accelerated SEI growth during battery cycling for the first time. Silicon anodes promise high energy densities of next‐generation lithium‐ion batteries, but suffer from shorter cycle life. The accelerated capacity fade stems from the repeated fracture and healing of the solid‐electrolyte interphase (SEI) on the silicon surface. This interplay of chemical and mechanical effects in SEI on silicon electrodes causes a complex aging behavior. However, so far, no model mechanistically captures the interrelation between mechanical SEI deterioration and accelerated SEI growth. In this article, we present a thermodynamically consistent continuum model of an electrode particle surrounded by an SEI layer. The silicon particle model consistently couples chemical reactions, physical transport, and elastic deformation. The SEI model comprises elastic and plastic deformation, fracture, and growth. Capacity fade measurements on graphite anodes and in‐situ mechanical SEI measurements on lithium thin films provide parametrization for our model. For the first time, we model the influence of cycling rate on the long‐term mechanical SEI deterioration and regrowth. Our model predicts the experimentally observed transition in time dependence from square‐root‐of‐time growth during battery storage to linear‐in‐time growth during continued cycling. Thereby our model unravels the mechanistic dependence of battery aging on operating conditions and supports the efforts to prolong the battery life of next‐generation lithium‐ion batteries.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseCC BY-NC 4.0 Internationaldc.rights
Link to license texthttps://creativecommons.org/licenses/by-nc/4.0/dc.rights.uri
Keywordcontinuum modelingdc.subject
Keywordmechanical propertiesdc.subject
Keywordsolid-electrolyte interphase (SEI)dc.subject
Dewey Decimal GroupDDC 540 / Chemistry & allied sciencesdc.subject.ddc
LCSHLithium ion batteriesdc.subject.lcsh
LCSHThermodynamicsdc.subject.lcsh
TitleChemo‐mechanical model of SEI growth on silicon electrode particles**dc.title
Resource typeWissenschaftlicher Artikeldc.type
SWORD Date2022-03-21T15:01:24Zdc.date.updated
VersionpublishedVersiondc.description.version
DOIhttp://dx.doi.org/10.18725/OPARU-44255dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-44331-1dc.identifier.urn
GNDThermodynamikdc.subject.gnd
FacultyFakultät für Naturwissenschaftenuulm.affiliationGeneral
InstitutionInstitut für Elektrochemieuulm.affiliationSpecific
Peer reviewjauulm.peerReview
DCMI TypeTextuulm.typeDCMI
CategoryPublikationenuulm.category
In cooperation withHelmholtz-Institut Ulmuulm.cooperation
DOI of original publication10.1002/batt.202100216dc.relation1.doi
Source - Title of sourceBatteries & Supercapssource.title
Source - Place of publicationWileysource.publisher
Source - Volume5source.volume
Source - Issue2source.issue
Source - Year2021source.year
Source - Article numbere202100216source.articleNumber
Source - eISSN2566-6223source.identifier.eissn
Bibliographyuulmuulm.bibliographie
Is Supplemented Byhttps://chemistry-europe.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbatt.202100216&file=batt202100216-sup-0001-misc_information.pdfdc.relation.isSupplementedBy
DFG project uulmGRK 2218 / SIMET / Simulation mechanisch-elektrisch-thermischer Vorgänge in Lithium-Ionen-Batterien / DFG / 281041241uulm.projectDFG
DFG project uulmJUSTUS 2 / HPC Forschungscluster (bwForCluster) Computergestützte Chemie und Quantenwissenschaften / DFG / 405998092uulm.projectDFG


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record