Author | Zhou, Hengyun | dc.contributor.author |
Author | Choi, Joonhee | dc.contributor.author |
Author | Choi, Soonwon | dc.contributor.author |
Author | Landig, Renate | dc.contributor.author |
Author | Douglas, Alexander M. | dc.contributor.author |
Author | Isoya, Junichi | dc.contributor.author |
Author | Jelezko, Fedor | dc.contributor.author |
Author | Onoda, Shinobu | dc.contributor.author |
Author | Sumiya, Hitoshi | dc.contributor.author |
Author | Cappellaro, Paola | dc.contributor.author |
Author | Knowles, Helena S. | dc.contributor.author |
Author | Park, Hongkun | dc.contributor.author |
Author | Lukin, Mikhail D. | dc.contributor.author |
Date of accession | 2022-07-26T12:03:03Z | dc.date.accessioned |
Available in OPARU since | 2022-07-26T12:03:03Z | dc.date.available |
Date of first publication | 2020 | dc.date.issued |
Abstract | Quantum metrology is a powerful tool for explorations of fundamental physical phenomena and applications in material science and biochemical analysis. While in principle the sensitivity can be improved by increasing the density of sensing particles, in practice this improvement is severely hindered by interactions between them. Here, using a dense ensemble of interacting electronic spins in diamond, we demonstrate a novel approach to quantum metrology to surpass such limitations. It is based on a new method of robust quantum control, which allows us to simultaneously suppress the undesired effects associated with spin-spin interactions, disorder, and control imperfections, enabling a fivefold enhancement in coherence time compared to state-of-the-art control sequences. Combined with optimal spin state initialization and readout directions, this allows us to achieve an ac magnetic field sensitivity well beyond the previous limit imposed by interactions, opening a new regime of high-sensitivity solid-state ensemble magnetometers. | dc.description.abstract |
Language | en | dc.language.iso |
Publisher | Universität Ulm | dc.publisher |
License | CC BY 4.0 International | dc.rights |
Link to license text | https://creativecommons.org/licenses/by/4.0/ | dc.rights.uri |
Keyword | Coherent control | dc.subject |
Keyword | Dipolar interaction | dc.subject |
Keyword | Long-range interactions | dc.subject |
Keyword | Magnetic interactions | dc.subject |
Keyword | Nuclear & electron resonance | dc.subject |
Keyword | Quantum control | dc.subject |
Keyword | Quantum metrology | dc.subject |
Keyword | Quantum sensing | dc.subject |
Keyword | Quantum simulation | dc.subject |
Keyword | Spin dynamics | dc.subject |
Keyword | 0-dimensional systems | dc.subject |
Keyword | 3-dimensional systems | dc.subject |
Keyword | Diamond | dc.subject |
Keyword | Nitrogen vacancy centers in diamond | dc.subject |
Keyword | Magnetic moment | dc.subject |
Keyword | Confocal imaging | dc.subject |
Keyword | Electron spin resonance | dc.subject |
Keyword | Magnetization measurements | dc.subject |
Keyword | Many-body techniques | dc.subject |
Keyword | Optically detected magnetic resonance | dc.subject |
Keyword | Rotating wave approximation | dc.subject |
Keyword | Two-level models | dc.subject |
Dewey Decimal Group | DDC 530 / Physics | dc.subject.ddc |
LCSH | Luminescence | dc.subject.lcsh |
LCSH | Electron paramagnetic resonance | dc.subject.lcsh |
LCSH | Rotational motion | dc.subject.lcsh |
LCSH | 3-dimensional ... | dc.subject.lcsh |
LCSH | Diamonds | dc.subject.lcsh |
LCSH | Etching | dc.subject.lcsh |
LCSH | Schrödinger equation | dc.subject.lcsh |
Title | Quantum Metrology with Strongly Interacting Spin Systems | dc.title |
Resource type | Wissenschaftlicher Artikel | dc.type |
Version | publishedVersion | dc.description.version |
DOI | http://dx.doi.org/10.18725/OPARU-44133 | dc.identifier.doi |
URN | http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-44209-7 | dc.identifier.urn |
GND | Quantenmetrologie | dc.subject.gnd |
GND | Lumineszenz | dc.subject.gnd |
GND | Diamant | dc.subject.gnd |
GND | Ätzen | dc.subject.gnd |
GND | ODMR-Spektroskopie | dc.subject.gnd |
GND | Schrödinger-Gleichung | dc.subject.gnd |
Faculty | Fakultät für Naturwissenschaften | uulm.affiliationGeneral |
Institution | Institut für Quantenoptik | uulm.affiliationSpecific |
Peer review | ja | uulm.peerReview |
DCMI Type | Text | uulm.typeDCMI |
Category | Publikationen | uulm.category |
DOI of original publication | 10.1103/physrevx.10.031003 | dc.relation1.doi |
Source - Title of source | Physical review X | source.title |
Source - Place of publication | American Physical Society | source.publisher |
Source - Volume | 10 | source.volume |
Source - Issue | 3 | source.issue |
Source - Year | 2020 | source.year |
Source - Article number | 031003 | source.articleNumber |
Source - ISSN | 2160-3308 | source.identifier.issn |
EU project uulm | HyperQ / Quantum hyperpolarisation for ultrasensitive nuclear magnetic resonance and imaging / EC / H2020 / 856432 | uulm.projectEU |
WoS | 000544854600002 | uulm.identifier.wos |
Bibliography | uulm | uulm.bibliographie |