Handling Occlusions in Automated Driving Using a Multiaccess Edge Computing Server-Based Environment Model From Infrastructure Sensors

peer-reviewed
Erstveröffentlichung
2021-07-12Authors
Buchholz, Michael
Müller, Johannes
Herrmann, Martin
Strohbeck, Jan
Völz, Benjamin
Wissenschaftlicher Artikel
Published in
IEEE Intelligent Transportation Systems Magazine ; 14 (2022), 3. - S. 106-120. - ISSN 1939-1390. - eISSN 1941-1197
Link to original publication
https://dx.doi.org/10.1109/MITS.2021.3089743Faculties
Fakultät für Ingenieurwissenschaften, Informatik und PsychologieInstitutions
Institut für Mess-, Regel- und MikrotechnikDocument version
accepted versionAbstract
The on-board sensors’ view of an automated vehicle (AV) can suffer from occlusions by other traffic participants, buildings, or vegetation, especially in urban areas. However, knowledge of possible other traffic participants in the occluded areas is crucial for an energy and comfort optimizing control of an AV. In such a case, information from infrastructure sensors sent via vehicle to anything (V2X) communication can help the AV. Fur such cases, we have developed and prototypically implemented a concept where an infrastructure environment model is generated from infrastructure sensors on a multi-access edge computing (MEC) server of an LTE/5G mobile network. This information extends the AVs’ field of view and is beneficially integrated into their motion planning schemes. In this article, after a description of the modules of our approach, we present and discuss real-world results from our pilot site on a public junction with prototype AVs.
EU Project uulm
ICT4CART / ICT Infrastructure for Connected and Automated Road Transport / EC / H2020 / 768953
Project uulm
LUKAS / Verbundprojekt: LUKAS - Lokales Umfeldmodell für das kooperative, automatisierte Fahren in komplexen Verkehrssituationen; Teilvorhaben: Infrastrukturseite Datenverarbeitung und kooperative Handlungsplanung / BMWi / 19A20004F
MEC-View / Verbundprojekt: Mobile Edge Computing basierte Objekterkennung für hoch- und vollautomatisiertes Fahren - MEC-View; Teilvorhaben: Infrastrukturseitige Fusion und Prädiktion der erkannten Objekte im MECServer / BMWi / 19A16010I
MEC-View / Verbundprojekt: Mobile Edge Computing basierte Objekterkennung für hoch- und vollautomatisiertes Fahren - MEC-View; Teilvorhaben: Infrastrukturseitige Fusion und Prädiktion der erkannten Objekte im MECServer / BMWi / 19A16010I
Subject headings
[GND]: Autonomes Fahrzeug | Car-to-Car-Kommunikation[LCSH]: Automated vehicles | Field experiments
[Free subject headings]: Connected Automated Driving | Field Test | Merging Scenarios | V2X
[DDC subject group]: DDC 620 / Engineering & allied operations
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-43715
Buchholz, Michael et al. (2022): Handling Occlusions in Automated Driving Using a Multiaccess Edge Computing Server-Based Environment Model From Infrastructure Sensors. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-43715
Citation formatter >