• English
    • Deutsch
  • English 
    • English
    • Deutsch
  • Login
View Item 
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unveiling the intricate intercalation mechanism in manganese sesquioxide as positive electrode in aqueous Zn‐metal battery

Thumbnail
AENM_AENM202100962.p ... (3.094Mb)

peer-reviewed

Erstveröffentlichung
2021-07-28
Authors
Ma, Yuan
Ma, Yanjiao
Diemant, Thomas
Cao, Kecheng
Liu, Xu
et al.
Wissenschaftlicher Artikel


Published in
Advanced Energy Materials ; 11 (2021), 35. - Art.-Nr. 2100962. - ISSN 1614-6832. - eISSN 1614-6840
Link to original publication
https://dx.doi.org/10.1002/aenm.202100962
Institutions
Institut für Oberflächenchemie und Katalyse
ZE Elektronenmikroskopie
External cooperations
Helmholtz-Institut Ullm
Karlsruher Institut für Technologie
Document version
published version (publisher's PDF)
Abstract
This work presents a comprehensive and systematic study of the charge storage mechanism of α‐Mn2O3 as a positive electrode in rechargeable aqueous Zn‐metal batteries. Upon the first and second cathodic steps a sequence of electrochemical and chemical reactions occurs, including the dissolution of Mn2+ ions, leading to the formation of a layered‐type L‐ZnxMnO2, which enables the reversible Zn2+ de‐/intercalation. In the family of Zn/manganese oxide batteries with mild aqueous electrolytes, cubic α‐Mn2O3 with bixbyite structure is rarely considered, because of the lack of the tunnel and/or layered structure that are usually believed to be indispensable for the incorporation of Zn ions. In this work, the charge storage mechanism of α‐Mn2O3 is systematically and comprehensively investigated. It is demonstrated that the electrochemically induced irreversible phase transition from α‐Mn2O3 to layered‐typed L‐ZnxMnO2, coupled with the dissolution of Mn2+ and OH− into the electrolyte, allows for the subsequent reversible de‐/intercalation of Zn2+. Moreover, it is proven that α‐Mn2O3 is not a host for H+. Instead, the MnO2 formed from L‐ZnxMnO2 and the Mn2+ in the electrolyte upon the initial charge is the host for H+. Based on this electrode mechanism, combined with fabricating hierarchically structured mesoporous α‐Mn2O3 microrod array material, an unprecedented rate capability with 103 mAh g−1 at 5.0 A g−1 as well as an appealing stability of 2000 cycles (at 2.0 A g−1) with a capacity decay of only ≈0.009% per‐cycle are obtained.
Is supplemented by
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Faenm.202100962&file=aenm202100962-sup-0001-SuppMat.pdf
Subject headings
[GND]: Kathode | Energiespeicher
[LCSH]: Cathodes | Energy storage
[Free subject headings]: α‐Mn 2O 3 | aqueous zinc‐metal batteries | energy storage mechanisms | hierarchical mesoporous structures
[DDC subject group]: DDC 540 / Chemistry & allied sciences
License
CC BY-NC-ND 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/

Metadata
Show full item record

DOI & citation

Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-43383

Ma, Yuan et al. (2022): Unveiling the intricate intercalation mechanism in manganese sesquioxide as positive electrode in aqueous Zn‐metal battery. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-43383
Citation formatter >



Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsPersonsInstitutionsPublication typesUlm SerialsDewey Decimal ClassesEU projects UlmDFG projects UlmOther projects Ulm

My Account

LoginRegister

Statistics

View Usage Statistics

Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement