Show simple item record

AuthorStrohbeck, Jandc.contributor.author
AuthorHerrmann, Martindc.contributor.author
AuthorMüller, Johannesdc.contributor.author
AuthorBuchholz, Michaeldc.contributor.author
Date of accession2022-02-17T14:32:40Zdc.date.accessioned
Available in OPARU since2022-02-17T14:32:40Zdc.date.available
Date of first publication2021-12-17dc.date.issued
AbstractThe collective perception service, which is in progress of standardization by the European Telecommunication Standards Institute, allows to share perception information among connected vehicles and road side units and thus can increase both safety and traffic efficiency. However, based on our practical experience from our research on infrastructure support of automated vehicles on a pilot installation in real traffic, in this work, we outline some drawbacks of the existing draft when applied to real-world environments. We observe that the strict cartesian representation does not fit well with typical models used to predict the motion of vehicles in automated driving applications. In theses cases, transformations and approximations are required, which increases the uncertainty about the perceived objects. In this work, we demonstrate the effect of such transformation errors using examples and propose an extension of the standard to prevent unnecessary transformations and approximations. Additionally, we show that the collective perception service can further be enhanced by allowing the optional transmission of motion predictions of perceived objects. That is, receivers benefit from saving computation time for object predictions and from the reception of high-quality motion predictions from road side units that are more accurate due to their knowledge of local peculiarities.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseLizenz Adc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/licenseA_v1dc.rights.uri
KeywordCollective Perceptiondc.subject
KeywordAutonomes Fahrendc.subject
KeywordMultiple Trajectory Predictiondc.subject
Dewey Decimal GroupDDC 620 / Engineering & allied operationsdc.subject.ddc
LCSHAutomated vehiclesdc.subject.lcsh
TitleAn extension proposal for the collective perception service to avoid transformation errors and Include object predictionsdc.title
Resource typeBeitrag zu einer Konferenzdc.type
VersionacceptedVersiondc.description.version
DOIhttp://dx.doi.org/10.18725/OPARU-41868dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-41944-6dc.identifier.urn
GNDAutonomes Fahrzeugdc.subject.gnd
FacultyFakultät für Ingenieurwissenschaften, Informatik und Psychologieuulm.affiliationGeneral
InstitutionInstitut für Mess-, Regel- und Mikrotechnikuulm.affiliationSpecific
Peer reviewjauulm.peerReview
DCMI TypeTextuulm.typeDCMI
CategoryPublikationenuulm.category
DOI of original publication10.1109/VNC52810.2021.9644655dc.relation1.doi
Source - Title of source2021 IEEE Vehicular Networking Conference (VNC)source.title
Source - Place of publicationIEEEsource.publisher
Source - Volume2021source.volume
Source - Year2021source.year
Source - From page40source.fromPage
Source - To page43source.toPage
Source - eISSN2157-9865source.identifier.eissn
Source - ISBN978-1-6654-4450-7source.identifier.isbn
EU project uulmICT4CART / ICT Infrastructure for Connected and Automated Road Transport / EC / H2020 / 768953uulm.projectEU
Conference name2021 IEEE Vehicular Networking Conference (VNC)uulm.conferenceName
Conference placeUlmuulm.conferencePlace
Conference start date2021-11-10uulm.conferenceStartDate
Conference end date2021-11-12uulm.conferenceEndDate
Open AccessGreen Publisheduulm.OA
WoS000758412900007uulm.identifier.wos
Bibliographyuulmuulm.bibliographie
Project uulmLUKAS / Verbundprojekt: LUKAS - Lokales Umfeldmodell für das kooperative, automatisierte Fahren in komplexen Verkehrssituationen; Teilvorhaben: Infrastrukturseite Datenverarbeitung und kooperative Handlungsplanung / BMWi / 19A20004Fuulm.projectOther


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record