Zur Kurzanzeige

AutorPantle, Ursadc.contributor.author
Aufnahmedatum2016-03-14T13:38:56Zdc.date.accessioned
In OPARU verfügbar seit2016-03-14T13:38:56Zdc.date.available
Jahr der Erstellung2006dc.date.created
ZusammenfassungFor a class of random fields, which is associated with stationary germ-grain models via conditionally bounded valuations, a mean value estimator is discussed. Its mean-square consistency and asymptotic normality is proven under certain conditions imposed on the dependence structure of the underlying point process and the grain distribution. For the Boolean model simple sufficient conditions on the grain distribution are derived, which guarantee the asymptotic normality using a central limit theorem for m-dependent random fields. For general germ-grain models beta-mixing conditions replace the assumption of m-dependence. For the asymptotic variance (or covariance matrix) three estimators are proposed and their mean-square consistency is shown under integrability conditions on mixed moments of the random fields. To evaluate estimators of the intrinsic volume densities of planar, stationary germ-grain models, computation algorithms are provided and discussed along some numerical examples for the Boolean model. Numerical results on running times, variability of the estimates, tests for normal distribution and significance tests for the vector of intrinsic volume densities complete the analysis.dc.description.abstract
Spracheendc.language.iso
Verbreitende StelleUniversität Ulmdc.publisher
LizenzStandard (Fassung vom 03.05.2003)dc.rights
Link zum Lizenztexthttps://oparu.uni-ulm.de/xmlui/license_v1dc.rights.uri
SchlagwortAsymptotic normalitydc.subject
SchlagwortGerm-grain modelsdc.subject
SchlagwortSpecific intrinsic volumesdc.subject
DDC-SachgruppeDDC 510 / Mathematicsdc.subject.ddc
LCSHEstimation theory. Asymptotic theorydc.subject.lcsh
LCSHRandom fieldsdc.subject.lcsh
LCSHStochastic geometrydc.subject.lcsh
TitelAsymptotic properties of estimators for random fields induced by stationary germ-grain modelsdc.title
RessourcentypDissertationdc.type
DOIhttp://dx.doi.org/10.18725/OPARU-390dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-vts-57181dc.identifier.urn
GNDStochastische Geometriedc.subject.gnd
GNDZufälliges Felddc.subject.gnd
FakultätFakultät für Mathematik und Wirtschaftswissenschaftenuulm.affiliationGeneral
Datum der Freischaltung2006-10-23T21:06:01Zuulm.freischaltungVTS
Peer-Reviewneinuulm.peerReview
Signatur DruckexemplarZ: J-H 11.270 ; W: W-H 9.384uulm.shelfmark
DCMI MedientypTextuulm.typeDCMI
VTS-ID5718uulm.vtsID
KategoriePublikationenuulm.category


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige