Show simple item record

AuthorPantle, Ursadc.contributor.author
Date of accession2016-03-14T13:38:56Zdc.date.accessioned
Available in OPARU since2016-03-14T13:38:56Zdc.date.available
Year of creation2006dc.date.created
AbstractFor a class of random fields, which is associated with stationary germ-grain models via conditionally bounded valuations, a mean value estimator is discussed. Its mean-square consistency and asymptotic normality is proven under certain conditions imposed on the dependence structure of the underlying point process and the grain distribution. For the Boolean model simple sufficient conditions on the grain distribution are derived, which guarantee the asymptotic normality using a central limit theorem for m-dependent random fields. For general germ-grain models beta-mixing conditions replace the assumption of m-dependence. For the asymptotic variance (or covariance matrix) three estimators are proposed and their mean-square consistency is shown under integrability conditions on mixed moments of the random fields. To evaluate estimators of the intrinsic volume densities of planar, stationary germ-grain models, computation algorithms are provided and discussed along some numerical examples for the Boolean model. Numerical results on running times, variability of the estimates, tests for normal distribution and significance tests for the vector of intrinsic volume densities complete the analysis.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseStandard (Fassung vom 03.05.2003)dc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/license_v1dc.rights.uri
KeywordAsymptotic normalitydc.subject
KeywordGerm-grain modelsdc.subject
KeywordSpecific intrinsic volumesdc.subject
Dewey Decimal GroupDDC 510 / Mathematicsdc.subject.ddc
LCSHEstimation theory. Asymptotic theorydc.subject.lcsh
LCSHRandom fieldsdc.subject.lcsh
LCSHStochastic geometrydc.subject.lcsh
TitleAsymptotic properties of estimators for random fields induced by stationary germ-grain modelsdc.title
Resource typeDissertationdc.type
DOIhttp://dx.doi.org/10.18725/OPARU-390dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-vts-57181dc.identifier.urn
GNDStochastische Geometriedc.subject.gnd
GNDZufälliges Felddc.subject.gnd
FacultyFakultät für Mathematik und Wirtschaftswissenschaftenuulm.affiliationGeneral
Date of activation2006-10-23T21:06:01Zuulm.freischaltungVTS
Peer reviewneinuulm.peerReview
Shelfmark print versionZ: J-H 11.270 ; W: W-H 9.384uulm.shelfmark
DCMI TypeTextuulm.typeDCMI
VTS ID5718uulm.vtsID
CategoryPublikationenuulm.category
Bibliographyuulmuulm.bibliographie


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record