Show simple item record

AuthorBörner, Micheldc.contributor.author
Date of accession2016-11-14T14:39:50Zdc.date.accessioned
Available in OPARU since2016-11-14T14:39:50Zdc.date.available
Year of creation2016dc.date.created
Date of first publication2016-11-14dc.date.issued
AbstractWe introduce an algorithm (written in Sage) for the L-functions of a large class of algebraic curves, and verify the expected functional equation numerically. Our computations are based on our previous results on stable reduction to calculate the local L-factor and the conductor exponent at the primes of bad reduction. The method we use works for any superelliptic curve over a number field. We present several families of examples, e.g. hyperelliptic curves of genus 2,...,6 with semistable reduction everywhere. In a second part, we consider Picard curves over Q. We give a completed list of the curves resulting from the algorithm by Malmskog and Rasmussen. Moreover, we present generalizations of their approach. This leads to a recipe for the calculation of the smallest conductor of a Picard curve over Q.dc.description.abstract
Languageen_USdc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseStandarddc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/license_v3dc.rights.uri
Dewey Decimal GroupDDC 510 / Mathematicsdc.subject.ddc
LCSHGeometry, algebraicdc.subject.lcsh
LCSHCurves, algebraicdc.subject.lcsh
LCSHL-functionsdc.subject.lcsh
TitleL-functions of curves of genus ≥ 3dc.title
Resource typeDissertationdc.type
Date of acceptance2016-10-14dcterms.dateAccepted
RefereeWewers, Stefandc.contributor.referee
RefereeSijsling, Jeroendc.contributor.referee
DOIhttp://dx.doi.org/10.18725/OPARU-4137dc.identifier.doi
PPN1653786868dc.identifier.ppn
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-4176-1dc.identifier.urn
GNDAlgebradc.subject.gnd
GNDKurvedc.subject.gnd
GNDL-Funktiondc.subject.gnd
GNDAlgebraische Geometriedc.subject.gnd
FacultyFakultät für Mathematik und Wirtschaftswissenschaftenuulm.affiliationGeneral
InstitutionInstitut für Reine Mathematikuulm.affiliationSpecific
Shelfmark print versionW: W-H 14.889uulm.shelfmark
Grantor of degreeFakultät für Mathematik und Wirtschaftswissenschaftenuulm.thesisGrantor
DCMI TypeTextuulm.typeDCMI
TypeErstveröffentlichunguulm.veroeffentlichung
CategoryPublikationenuulm.category
Bibliographyuulmuulm.bibliographie


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record