Author | Börner, Michel | dc.contributor.author |
Date of accession | 2016-11-14T14:39:50Z | dc.date.accessioned |
Available in OPARU since | 2016-11-14T14:39:50Z | dc.date.available |
Year of creation | 2016 | dc.date.created |
Date of first publication | 2016-11-14 | dc.date.issued |
Abstract | We introduce an algorithm (written in Sage) for the L-functions of a large class of algebraic curves,
and verify the expected functional equation numerically. Our computations
are based on our previous results on stable reduction to calculate the
local L-factor and the conductor exponent at the primes of bad reduction.
The method we use works for any superelliptic curve over a number field.
We present several families of examples, e.g. hyperelliptic curves
of genus 2,...,6 with semistable reduction everywhere.
In a second part, we consider Picard curves over Q. We give a completed list of the curves resulting from the algorithm by Malmskog and Rasmussen. Moreover, we present generalizations of their approach. This leads to a recipe for the calculation of the smallest conductor of a Picard curve over Q. | dc.description.abstract |
Language | en_US | dc.language.iso |
Publisher | Universität Ulm | dc.publisher |
License | Standard | dc.rights |
Link to license text | https://oparu.uni-ulm.de/xmlui/license_v3 | dc.rights.uri |
Dewey Decimal Group | DDC 510 / Mathematics | dc.subject.ddc |
LCSH | Geometry, algebraic | dc.subject.lcsh |
LCSH | Curves, algebraic | dc.subject.lcsh |
LCSH | L-functions | dc.subject.lcsh |
Title | L-functions of curves of genus ≥ 3 | dc.title |
Resource type | Dissertation | dc.type |
Date of acceptance | 2016-10-14 | dcterms.dateAccepted |
Referee | Wewers, Stefan | dc.contributor.referee |
Referee | Sijsling, Jeroen | dc.contributor.referee |
DOI | http://dx.doi.org/10.18725/OPARU-4137 | dc.identifier.doi |
PPN | 1653786868 | dc.identifier.ppn |
URN | http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-4176-1 | dc.identifier.urn |
GND | Algebra | dc.subject.gnd |
GND | Kurve | dc.subject.gnd |
GND | L-Funktion | dc.subject.gnd |
GND | Algebraische Geometrie | dc.subject.gnd |
Faculty | Fakultät für Mathematik und Wirtschaftswissenschaften | uulm.affiliationGeneral |
Institution | Institut für Reine Mathematik | uulm.affiliationSpecific |
Shelfmark print version | W: W-H 14.889 | uulm.shelfmark |
Grantor of degree | Fakultät für Mathematik und Wirtschaftswissenschaften | uulm.thesisGrantor |
DCMI Type | Text | uulm.typeDCMI |
Type | Erstveröffentlichung | uulm.veroeffentlichung |
Category | Publikationen | uulm.category |
Bibliography | uulm | uulm.bibliographie |