L-functions of curves of genus ≥ 3

Erstveröffentlichung
2016-11-14Authors
Börner, Michel
Referee
Wewers, StefanSijsling, Jeroen
Dissertation
Faculties
Fakultät für Mathematik und WirtschaftswissenschaftenInstitutions
Institut für Reine MathematikAbstract
We introduce an algorithm (written in Sage) for the L-functions of a large class of algebraic curves,
and verify the expected functional equation numerically. Our computations
are based on our previous results on stable reduction to calculate the
local L-factor and the conductor exponent at the primes of bad reduction.
The method we use works for any superelliptic curve over a number field.
We present several families of examples, e.g. hyperelliptic curves
of genus 2,...,6 with semistable reduction everywhere.
In a second part, we consider Picard curves over Q. We give a completed list of the curves resulting from the algorithm by Malmskog and Rasmussen. Moreover, we present generalizations of their approach. This leads to a recipe for the calculation of the smallest conductor of a Picard curve over Q.
Date created
2016
Subject headings
[GND]: Algebra | Kurve | L-Funktion | Algebraische Geometrie[LCSH]: Geometry, algebraic | Curves, algebraic | L-functions
[DDC subject group]: DDC 510 / Mathematics
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-4137
Börner, Michel (2016): L-functions of curves of genus ≥ 3. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-4137
Citation formatter >