• English
    • Deutsch
  • English 
    • English
    • Deutsch
  • Login
View Item 
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

L-functions of curves of genus ≥ 3

Thumbnail
Diss_Text_MBoerner_O ... (861.0Kb)
Erstveröffentlichung
2016-11-14
Authors
Börner, Michel
Referee
Wewers, Stefan
Sijsling, Jeroen
Dissertation


Faculties
Fakultät für Mathematik und Wirtschaftswissenschaften
Institutions
Institut für Reine Mathematik
Abstract
We introduce an algorithm (written in Sage) for the L-functions of a large class of algebraic curves, and verify the expected functional equation numerically. Our computations are based on our previous results on stable reduction to calculate the local L-factor and the conductor exponent at the primes of bad reduction. The method we use works for any superelliptic curve over a number field. We present several families of examples, e.g. hyperelliptic curves of genus 2,...,6 with semistable reduction everywhere. In a second part, we consider Picard curves over Q. We give a completed list of the curves resulting from the algorithm by Malmskog and Rasmussen. Moreover, we present generalizations of their approach. This leads to a recipe for the calculation of the smallest conductor of a Picard curve over Q.
Date created
2016
Subject headings
[GND]: Algebra | Kurve | L-Funktion | Algebraische Geometrie
[LCSH]: Geometry, algebraic | Curves, algebraic | L-functions
[DDC subject group]: DDC 510 / Mathematics
License
Standard
https://oparu.uni-ulm.de/xmlui/license_v3

Metadata
Show full item record

DOI & citation

Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-4137

Börner, Michel (2016): L-functions of curves of genus ≥ 3. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-4137
Citation formatter >



Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsPersonsInstitutionsPublication typesUlm SerialsDewey Decimal ClassesEU projects UlmDFG projects UlmOther projects Ulm

My Account

LoginRegister

Statistics

View Usage Statistics

Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement