Show simple item record

AuthorWahrheit, Markusdc.contributor.author
Date of accession2016-03-14T13:38:55Zdc.date.accessioned
Available in OPARU since2016-03-14T13:38:55Zdc.date.available
Year of creation2006dc.date.created
AbstractThe present dissertation deals with the oscillation behavior of linear Hamiltonian systems and related eigenvalue problems with general, linear independent self-adjoint boundary conditions. The main new aspect of this dissertation is the fact that we do not require controllability, strong observability or strong normality of the system. In view of this generalization it is necessary to introduce a new notion of "proper" eigenvalues and their multiplicities of the related eigenvalue problem. We show that the "proper" eigenvalues of the related eigenvalue problems are always isolated. Furthermore we introduce a new notion of the multiplicity of a "proper" focal point of so-called conjoined bases of the differential system. We derive oscillation theorems which give a formula for the number of all "proper" eigenvalues (including multiplicities) smaller or equal than a certain constant with respect to the number of all "proper" focal points (including multiplicities) of a certain conjoined basis of the Hamiltonian system. Due to our generalization we are able to treat more general Sturm-Liouville eigenvalue problems as in the existing literature.dc.description.abstract
Languagededc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseStandard (Fassung vom 03.05.2003)dc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/license_v1dc.rights.uri
KeywordOszillationdc.subject
Dewey Decimal GroupDDC 510 / Mathematicsdc.subject.ddc
LCSHEigenvaluesdc.subject.lcsh
LCSHHamiltonian systemsdc.subject.lcsh
TitleEigenwertprobleme und Oszillation linearer Hamiltonscher Systemedc.title
Resource typeDissertationdc.type
DOIhttp://dx.doi.org/10.18725/OPARU-386dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-vts-56228dc.identifier.urn
GNDEigenwertproblemdc.subject.gnd
GNDHamiltonsches Systemdc.subject.gnd
GNDSturm-Liouville-Problemdc.subject.gnd
FacultyFakultät für Mathematik und Wirtschaftswissenschaftenuulm.affiliationGeneral
Date of activation2006-06-27T16:52:16Zuulm.freischaltungVTS
Peer reviewneinuulm.peerReview
Shelfmark print versionZ: J-H 11.173 ; N: J-H 5.152uulm.shelfmark
DCMI TypeTextuulm.typeDCMI
VTS ID5622uulm.vtsID
CategoryPublikationenuulm.category
Bibliographyuulmuulm.bibliographie


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record