Show simple item record

AuthorKirchhoff, Björndc.contributor.author
AuthorBraunwarth, Lauradc.contributor.author
AuthorJung, Christophdc.contributor.author
AuthorJónsson, Hannesdc.contributor.author
AuthorFantauzzi, Donatodc.contributor.author
AuthorJacob, Timodc.contributor.author
Date of accession2022-01-20T16:38:34Zdc.date.accessioned
Available in OPARU since2022-01-20T16:38:34Zdc.date.available
Date of first publication2019-12-26dc.date.issued
AbstractOxidative degradation of cuboctahedral platinum nanoparticles is simulated using reactive force fields and a random‐number‐based sampling scheme. Potential‐dependent phase diagrams, constructed from the resulting structures, predict thermodynamically stable surface oxides between 0.85 and 1.15 V versus standard hydrogen electrode. At potentials above 1.15 V, calculations suggest dissolution of the nanoparticle into smaller clusters of Pt6O8 stoichiometry. Abstract Improved understanding of the fundamental processes leading to degradation of platinum nanoparticle electrocatalysts is essential to the continued advancement of their catalytic activity and stability. To this end, the oxidation of platinum nanoparticles is simulated using a ReaxFF reactive force field within a grand‐canonical Monte Carlo scheme. 2–4 nm cuboctahedral particles serve as model systems, for which electrochemical potential‐dependent phase diagrams are constructed from the thermodynamically most stable oxide structures, including solvation and thermochemical contributions. Calculations in this study suggest that surface oxide structures should become thermodynamically stable at voltages around 0.80–0.85 V versus standard hydrogen electrode, which corresponds to typical fuel cell operating conditions. The potential presence of a surface oxide during catalysis is usually not accounted for in theoretical studies of Pt electrocatalysts. Beyond 1.1 V, fragmentation of the catalyst particles into [Pt6O8]4− clusters is observed. Density functional theory calculations confirm that [Pt6O8]4− is indeed stable and hydrophilic. These results suggest that the formation of [Pt6O8]4− may play an important role in platinum catalyst degradation as well as the electromotoric transport of Pt2+/4+ ions in fuel cells.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseCC BY-NC-ND 4.0 Internationaldc.rights
Link to license texthttps://creativecommons.org/licenses/by-nc-nd/4.0/dc.rights.uri
KeywordReaxFFdc.subject
Dewey Decimal GroupDDC 530 / Physicsdc.subject.ddc
Dewey Decimal GroupDDC 540 / Chemistry & allied sciencesdc.subject.ddc
Dewey Decimal GroupDDC 620 / Engineering & allied operationsdc.subject.ddc
LCSHElectrocatalysisdc.subject.lcsh
LCSHFuel cellsdc.subject.lcsh
LCSHOxidationdc.subject.lcsh
LCSHPlatinum catalystsdc.subject.lcsh
TitleSimulations of the oxidation and degradation of platinum electrocatalystsdc.title
Resource typeWissenschaftlicher Artikeldc.type
SWORD Date2020-12-09T19:34:33Zdc.date.updated
VersionpublishedVersiondc.description.version
DOIhttp://dx.doi.org/10.18725/OPARU-40988dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-41064-3dc.identifier.urn
GNDElektrokatalysedc.subject.gnd
GNDBrennstoffzelledc.subject.gnd
GNDOxidationdc.subject.gnd
FacultyFakultät für Naturwissenschaftenuulm.affiliationGeneral
InstitutionInstitut für Elektrochemieuulm.affiliationSpecific
Peer reviewjauulm.peerReview
DCMI TypeTextuulm.typeDCMI
CategoryPublikationenuulm.category
In cooperation withHelmholtz-Institut Ulmuulm.cooperation
DOI of original publication10.1002/smll.201905159dc.relation1.doi
Source - Title of sourceSmallsource.title
Source - Place of publicationWileysource.publisher
Source - Volume16source.volume
Source - Issue5source.issue
Source - Year2020source.year
Source - Article number1905159source.articleNumber
Source - ISSN1613-6810source.identifier.issn
Source - eISSN1613-6829source.identifier.eissn
Open AccessOther Golduulm.OA
WoS000504451700001uulm.identifier.wos
Bibliographyuulmuulm.bibliographie
Is Supplemented Byhttps://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fsmll.201905159&file=smll201905159-sup-0001-SuppMat.pdfdc.relation.isSupplementedBy
DFG project uulmSFB 1316 / Transiente Atmosphärendruckplasmen - vom Plasma zu Flüssigkeiten zu Festkörpern / DFG / 327886311uulm.projectDFG
Project uulmGEP / Verbundprojekt: Grundlagen elektrochemischer Phasengrenzen (GEP) - Teilvorhaben: Theoretische Untersuchungen an elektrochemischen Grenzschichten / BMBF / 13XP5023Duulm.projectOther
Project uulmGEP / Verbundprojekt: Grundlagen elektrochemischer Phasengrenzen (GEP) - Teilvorhaben: Theoretische Untersuchungen an elektrochemischen Grenzschichten / BMBF / 13XP5023Duulm.projectOther


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record