• English
    • Deutsch
  • English 
    • English
    • Deutsch
  • Login
View Item 
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Large-scale statistical learning for mass transport prediction in porous materials using 90,000 artificially generated microstructures

Thumbnail
fmats-08-786502.pdf (32.00Mb)
fmats-08-786502-g005 ... (289.6Kb)
fmats-08-786502-g003 ... (216.2Kb)
fmats-08-786502-g004 ... (275.9Kb)
fmats-08-786502-g006 ... (300.3Kb)
fmats-08-786502-g008 ... (118.8Kb)
fmats-08-786502-g002 ... (564.1Kb)
fmats-08-786502-g001 ... (2.533Mb)
fmats-08-786502-g007 ... (83.10Kb)

peer-reviewed

Erstveröffentlichung
2021-12-23
Authors
Prifling, Benedikt
Röding, Magnus
Townsend, Philip
Neumann, Matthias
Schmidt, Volker
Wissenschaftlicher Artikel


Published in
Frontiers in Materials ; 8 (2021). - Art.-Nr. 786502. - eISSN 2296-8016
Link to original publication
https://dx.doi.org/10.3389/fmats.2021.786502
Faculties
Fakultät für Mathematik und Wirtschaftswissenschaften
Institutions
Institut für Stochastik
External cooperations
RISE Research Institutes of Sweden
Chalmers University of Technology
University of Gothenburg
Document version
published version (publisher's PDF)
Abstract
Effective properties of functional materials crucially depend on their 3D microstructure. In this paper, we investigate quantitative relationships between descriptors of two-phase microstructures, consisting of solid and pores and their mass transport properties. To that end, we generate a vast database comprising 90,000 microstructures drawn from nine different stochastic models, and compute their effective diffusivity and permeability as well as various microstructural descriptors. To the best of our knowledge, this is the largest and most diverse dataset created for studying the influence of 3D microstructure on mass transport. In particular, we establish microstructure-property relationships using analytical prediction formulas, artificial (fully-connected) neural networks, and convolutional neural networks. Again, to the best of our knowledge, this is the first time that these three statistical learning approaches are quantitatively compared on the same dataset. The diversity of the dataset increases the generality of the determined relationships, and its size is vital for robust training of convolutional neural networks. We make the 3D microstructures, their structural descriptors and effective properties, as well as the code used to study the relationships between them available open access.
DFG Project THU
Parametrische Darstellung und stochastische 3D-Modellierung von Korn-Mikrostrukturen in polykristallinen Materialien mittels zufälliger markierter Tessellationen / DFG / 322917577
Publication funding
Open-Access-Förderung durch die Universität Ulm
Is supplemented by
https://zenodo.org/record/ 4047774
Subject headings
[Free subject headings]: diffusivity | permeability | virtual materials testing | deep learning | porous materials | mass transport | structure-property relationship
[DDC subject group]: DDC 530 / Physics
License
CC BY 4.0 International
https://creativecommons.org/licenses/by/4.0/

Metadata
Show full item record

DOI & citation

Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-40977

Prifling, Benedikt et al. (2022): Large-scale statistical learning for mass transport prediction in porous materials using 90,000 artificially generated microstructures. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-40977
Citation formatter >



Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsPersonsInstitutionsPublication typesUlm SerialsDewey Decimal ClassesEU projects UlmDFG projects UlmOther projects Ulm

My Account

LoginRegister

Statistics

View Usage Statistics

Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement