Author | Dina, Bogdan Adrian | dc.contributor.author |
Date of accession | 2021-12-17T09:47:28Z | dc.date.accessioned |
Available in OPARU since | 2021-12-17T09:47:28Z | dc.date.available |
Year of creation | 2021 | dc.date.created |
Date of first publication | 2021-12-17 | dc.date.issued |
Abstract | In this thesis we study classification problems in algebraic geometry. In the context of algebraic geometry these classification problems are called moduli problems. In an informal way, a moduli problem is that of classifying of families of algebraic objects with certain extra structure. In our case, the algebraic objects are abelian varieties with complex multiplication (CM). In order to solve certain (algorithmic) algebraic problems, we give a detailed description of the linear-algebraic data of abelian varieties with CM. | dc.description.abstract |
Abstract | Diese Arbeit befasst sich mit der algorithmischen Konstruktion von Gleichungen algebraischer Kurven von Geschlecht 2 und 3. Ausgehend von ihren hauptpolarisierten Abelschen Varie- täten bestimmen wir mit Hilfe des Computers (numerische) Invarianten der Kurven. Diese entsprechen (approximationen) algebraischen Zahlen, mit denen wir eine explizite Gleichung der Kurven darstellen. | dc.description.abstract |
Language | en | dc.language.iso |
Publisher | Universität Ulm | dc.publisher |
License | CC BY 4.0 International | dc.rights |
Link to license text | https://creativecommons.org/licenses/by/4.0/ | dc.rights.uri |
Keyword | Complex multiplication | dc.subject |
Keyword | Theta functions | dc.subject |
Keyword | Algebraic curves | dc.subject |
Keyword | Dieudonné theory | dc.subject |
Dewey Decimal Group | DDC 510 / Mathematics | dc.subject.ddc |
LCSH | Abelian varieties | dc.subject.lcsh |
LCSH | Multiplication, Complex | dc.subject.lcsh |
LCSH | Functions, Theta | dc.subject.lcsh |
LCSH | Curves, Algebraic | dc.subject.lcsh |
Title | Algorithms for curves of low genus: complex multiplication and Diedonné theory | dc.title |
Resource type | Dissertation | dc.type |
Date of acceptance | 2021-11-08 | dcterms.dateAccepted |
Referee | Bouw, Irene | dc.contributor.referee |
Referee | Lorenzo Garcia, Elisa | dc.contributor.referee |
DOI | http://dx.doi.org/10.18725/OPARU-40432 | dc.identifier.doi |
PPN | 1782689818 | dc.identifier.ppn |
URN | http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-40508-4 | dc.identifier.urn |
GND | Abelsche Mannigfaltigkeit | dc.subject.gnd |
GND | Komplexe Multiplikation | dc.subject.gnd |
GND | Thetafunktion | dc.subject.gnd |
GND | Algebraische Kurve | dc.subject.gnd |
Faculty | Fakultät für Mathematik und Wirtschaftswissenschaften | uulm.affiliationGeneral |
Institution | Institut für Algebra und Zahlentheorie | uulm.affiliationSpecific |
Grantor of degree | Fakultät für Mathematik und Wirtschaftswissenschaften | uulm.thesisGrantor |
DCMI Type | Text | uulm.typeDCMI |
Category | Publikationen | uulm.category |
Bibliography | uulm | uulm.bibliographie |