Visual analysis of printed circuit boards

Erstveröffentlichung
2021-12-02Autoren
Günther, Marco
Betreuer
Könings, BastianWeber, Fabian
Ehret, Heiko
Gutachter
Neumann, Heiko
Abschlussarbeit (Bachelor)
Fakultäten
Fakultät für Ingenieurwissenschaften, Informatik und PsychologieInstitutionen
Institut für NeuroinformatikExterne Kooperationen
SCHUTZWERK GmbHZusammenfassung
Sophisticated object detection is used in automated systems throughout many areas
of application. This work elaborates the possibilities of utilizing a modern object
detection approach for visual analysis of printed circuit boards (PCB) in the context
of hardware-related security assessments. In detail, the task is to reliably localize
and classify different types of integrated circuits and other components on image
data depicting electronic devices.
Faster R-CNN, an object detection architecture based on modern convolutional
neural networks, is selected for this purpose. In order to effectively train the detector
a variety of datasets are collated that contain suitable annotations for PCB com-
ponents. In parallel, an internal image acquisition process further complements the
available datasets. All dataset are extended by introducing six new sub-categories for
integrated circuits. This approach of IC class breakdown is unique and not present
in any of the investigated datasets so far. In addition, four new categories for passive
and miscellaneous components are also introduced into the data. Finally, the object
detection architecture is appropriately configured and several models are trained with
different combinations of the available image data.
The best model yields an overall detection performance of 0.57 mAP. Detection
scores of individual classes tend to be more vulnerable to small component sizes
and high intra-class variance than to class imbalances of the datasets. Acceptable
performance scores above 0.6 AP are reported for four out of ten classes, two even
reach 0.75 AP.
Erstellung / Fertigstellung
2020
Projekt uulm
SecForCARs / Verbundprojekt: Security for Connected, Autonomous caRs - SecForCARs -; Teilvorhaben: Sichere Verarbeitungskette / BMBF / 16KIS0797
Schlagwörter
[GND]: Maschinelles Lernen[LCSH]: Machine learning | Computer vision | Labels
[Freie Schlagwörter]: Labeling | Annotations | IT-Security | Machine learning | Object detection | Printed circuit boards | Image datasets | Embedded hardware
[DDC Sachgruppe]: DDC 620 / Engineering & allied operations
Metadata
Zur LanganzeigeDOI & Zitiervorlage
Nutzen Sie bitte diesen Identifier für Zitate & Links: http://dx.doi.org/10.18725/OPARU-40107
Günther, Marco (2021): Visual analysis of printed circuit boards. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-40107
Verschiedene Zitierstile >