Show simple item record

AuthorFindler, Christophdc.contributor.author
AuthorLang, Johannesdc.contributor.author
AuthorOsterkamp, Christiandc.contributor.author
AuthorNesládek, Milošdc.contributor.author
AuthorJelezko, Fedordc.contributor.author
Date of accession2021-07-21T14:00:32Zdc.date.accessioned
Available in OPARU since2021-07-21T14:00:32Zdc.date.available
Date of first publication2020-12-29dc.date.issued
Abstracthe negatively charged nitrogen-vacancy (NV−) center shows excellent spin properties and sensing capabilities on the nanoscale even at room temperature. Shallow implanted NV− centers can effectively be protected from surface noise by chemical vapor deposition (CVD) diamond overgrowth, i.e. burying them homogeneously deeper in the crystal. However, the origin of the substantial losses in NV− centers after overgrowth remains an open question. Here, we use shallow NV− centers to exclude surface etching and identify the passivation reaction of NV to NVH centers during the growth as the most likely reason. Indirect overgrowth featuring low energy (2.5–5 keV) nitrogen ion implantation and CVD diamond growth before the essential annealing step reduces this passivation phenomenon significantly. Furthermore, we find higher nitrogen doses to slow down the NV–NVH conversion kinetics, which gives insight into the sub-surface diffusion of hydrogen in diamond during growth. Finally, nano sensors fabricated by indirect overgrowth combine tremendously enhanced T2 and T∗2 times with an outstanding degree of depth-confinement which is not possible by implanting with higher energies alone. Our results improve the understanding of CVD diamond overgrowth and pave the way towards reliable and advanced engineering of shallow NV− centers for future quantum sensing devices.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseCC BY 4.0 Internationaldc.rights
Link to license texthttps://creativecommons.org/licenses/by/4.0/dc.rights.uri
KeywordMaterials sciencedc.subject
KeywordNanoscience and technologydc.subject
KeywordPhysicsdc.subject
Dewey Decimal GroupDDC 540 / Chemistry & allied sciencesdc.subject.ddc
LCSHMaterials sciencedc.subject.lcsh
LCSHNanoscience and technologydc.subject.lcsh
LCSHPhysicsdc.subject.lcsh
TitleIndirect overgrowth as a synthesis route for superior diamond nano sensorsdc.title
Resource typeWissenschaftlicher Artikeldc.type
VersionpublishedVersiondc.description.version
DOIhttp://dx.doi.org/10.18725/OPARU-38302dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-38378-2dc.identifier.urn
GNDWerkstoffkundedc.subject.gnd
GNDPhysikdc.subject.gnd
FacultyFakultät für Naturwissenschaftenuulm.affiliationGeneral
InstitutionInstitut für Quantenoptikuulm.affiliationSpecific
InstitutionCenter for Integrated Quantum Science and Technology (IQST)uulm.affiliationSpecific
Peer reviewjauulm.peerReview
DCMI TypeTextuulm.typeDCMI
CategoryPublikationenuulm.category
In cooperation withMercedes Benz AGuulm.cooperation
In cooperation withHasselt Universityuulm.cooperation
DOI of original publication10.1038/s41598-020-79943-2dc.relation1.doi
Source - Title of sourceScientific Reportssource.title
Source - Place of publicationNature Researchsource.publisher
Source - Volume10source.volume
Source - Year2020source.year
Source - Article number22404source.articleNumber
Source - eISSN2045-2322source.identifier.eissn
FundingDEAL-Projektuulm.funding
Bibliographyuulmuulm.bibliographie


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record