• English
    • Deutsch
  • English 
    • English
    • Deutsch
  • Login
View Item 
  •   Home
  • Universität Ulm / Medizin
  • Publikationen
  • View Item
  •   Home
  • Universität Ulm / Medizin
  • Publikationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Osteoarthritis-related degeneration alters the biomechanical properties of human menisci before the articular cartilage

Thumbnail
Seitz_2021.pdf (4.311Mb)

peer-reviewed

Erstveröffentlichung
2021-05-06
Authors
Seitz, Andreas Martin
Osthaus, Felix
Schwer, Jonas
Warnecke, Daniela
Faschingbauer, Martin
et al.
Wissenschaftlicher Artikel


Published in
Frontiers in Bioengineering and Biotechnology ; 9 (2021). - Art.-Nr. 659989. - eISSN 2296-4185
Link to original publication
https://dx.doi.org/10.3389/fbioe.2021.659989
Institutions
UKU. Institut für Unfallchirurgische Forschung und Biomechanik
Rehabilitationskrankenhaus Ulm
Document version
published version (publisher's PDF)
Abstract
An exact understanding of the interplay between the articulating tissues of the knee joint in relation to the osteoarthritis (OA)-related degeneration process is of considerable interest. Therefore, the aim of the present study was to characterize the biomechanical properties of mildly and severely degenerated human knee joints, including their menisci and tibial and femoral articular cartilage (AC) surfaces. A spatial biomechanical mapping of the articulating knee joint surfaces of 12 mildly and 12 severely degenerated human cadaveric knee joints was assessed using a multiaxial mechanical testing machine. To do so, indentation stress relaxation tests were combined with thickness and water content measurements at the lateral and medial menisci and the AC of the tibial plateau and femoral condyles to calculate the instantaneous modulus (IM), relaxation modulus, relaxation percentage, maximum applied force during the indentation, and the water content. With progressing joint degeneration, we found an increase in the lateral and the medial meniscal instantaneous moduli (p < 0.02), relaxation moduli (p < 0.01), and maximum applied forces (p < 0.01), while for the underlying tibial AC, the IM (p = 0.01) and maximum applied force (p < 0.01) decreased only at the medial compartment. Degeneration had no influence on the relaxation percentage of the soft tissues. While the water content of the menisci did not change with progressing degeneration, the severely degenerated tibial AC contained more water (p < 0.04) compared to the mildly degenerated tibial cartilage. The results of this study indicate that degeneration-related (bio-)mechanical changes seem likely to be first detectable in the menisci before the articular knee joint cartilage is affected. Should these findings be further reinforced by structural and imaging analyses, the treatment and diagnostic paradigms of OA might be modified, focusing on the early detection of meniscal degeneration and its respective treatment, with the final aim to delay osteoarthritis onset.
Publication funding
Open-Access-Förderung durch die Medizinische Fakultät der Universität Ulm
Is supplemented by
https://www.frontiersin.org/articles/10.3389/fbioe.2021.659989/full#supplementary-material
Subject headings
[GND]: Kniegelenk | Degeneration
[MeSH]: Knee; Pathology | Meniscus
[Free subject headings]: Knee | Degeneration | Instantaneous modulus | Thickness | Water content | Equilibrium modulus | Mapping
[DDC subject group]: DDC 610 / Medicine & health
License
CC BY 4.0 International
https://creativecommons.org/licenses/by/4.0/

Metadata
Show full item record

DOI & citation

Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-37872

Seitz, Andreas Martin et al. (2021): Osteoarthritis-related degeneration alters the biomechanical properties of human menisci before the articular cartilage. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-37872
Citation formatter >



Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsPersonsInstitutionsPublication typesUlm SerialsDewey Decimal ClassesEU projects UlmDFG projects UlmOther projects Ulm

My Account

LoginRegister

Statistics

View Usage Statistics

Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement