Author | Rach, Niklas | dc.contributor.author |
Author | Matsuda, Yuki | dc.contributor.author |
Author | Ultes, Stefan | dc.contributor.author |
Author | Minker, Wolfgang | dc.contributor.author |
Author | Yasumoto, Keichi | dc.contributor.author |
Date of accession | 2021-05-26T13:13:27Z | dc.date.accessioned |
Available in OPARU since | 2021-05-26T13:13:27Z | dc.date.available |
Date of first publication | 2021-01-13 | dc.date.issued |
Abstract | Information about a subjective user opinion towards an argument is crucial for argumentative
systems in order to present appropriate content and adapt their behaviour to the individual user. However,
requesting explicit feedback regarding the discussed arguments is often impractical and can hinder the
interaction. To address this issue, we investigate the automatic recognition of user opinions towards
arguments that are presented by means of a virtual avatar from social signals.We focus on two different user
opinion categories (convincing and interesting) and two different types of social signals (facial expressions
and eye movement). The recognition is addressed as a supervised learning problem and realized using the
argument search evaluation data discussed in previous work. The overall performance is compared to a
human annotation on a subset of the collected data. The results show that the machine learning performance
is similar to human performance in both recognition tasks. | dc.description.abstract |
Language | en | dc.language.iso |
Publisher | Universität Ulm | dc.publisher |
License | CC BY 4.0 International | dc.rights |
Link to license text | https://creativecommons.org/licenses/by/4.0/ | dc.rights.uri |
Keyword | Annotations | dc.subject |
Keyword | Estimation | dc.subject |
Keyword | Usability | dc.subject |
Keyword | Computational argumentation | dc.subject |
Keyword | argument quality estimation | dc.subject |
Keyword | argumentative dialogue systems | dc.subject |
Keyword | social signal extraction | dc.subject |
Dewey Decimal Group | DDC 000 / Computer science, information & general works | dc.subject.ddc |
Dewey Decimal Group | DDC 620 / Engineering & allied operations | dc.subject.ddc |
LCSH | Task analysis | dc.subject.lcsh |
LCSH | Search engines | dc.subject.lcsh |
LCSH | Machine learning | dc.subject.lcsh |
Title | Estimating subjective argument quality aspects from social signals in argumentative dialogue systems | dc.title |
Resource type | Wissenschaftlicher Artikel | dc.type |
Version | publishedVersion | dc.description.version |
DOI | http://dx.doi.org/10.18725/OPARU-37680 | dc.identifier.doi |
URN | http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-37742-7 | dc.identifier.urn |
GND | Lernaufgabe | dc.subject.gnd |
GND | Schätzung | dc.subject.gnd |
GND | Affective Computing | dc.subject.gnd |
GND | Maschinelles Lernen | dc.subject.gnd |
GND | Benutzerfreundlichkeit | dc.subject.gnd |
Faculty | Fakultät für Ingenieurwissenschaften, Informatik und Psychologie | uulm.affiliationGeneral |
Institution | Institut für Nachrichtentechnik | uulm.affiliationSpecific |
Peer review | ja | uulm.peerReview |
DCMI Type | Text | uulm.typeDCMI |
Category | Publikationen | uulm.category |
In cooperation with | Nara Institute of Science and Technology (NAIST) | uulm.cooperation |
In cooperation with | Japan Science and Technology Agency (JST) | uulm.cooperation |
In cooperation with | Mercedes-Benz Sindelfingen Research & Development | uulm.cooperation |
DOI of original publication | 10.1109/ACCESS.2021.3051526 | dc.relation1.doi |
Source - Title of source | IEEE Access | source.title |
Source - Place of publication | Institute of Electrical and Electronics Engineers | source.publisher |
Source - Volume | 9 | source.volume |
Source - Year | 2021 | source.year |
Source - From page | 11610 | source.fromPage |
Source - To page | 11621 | source.toPage |
Source - eISSN | 2169-3536 | source.identifier.eissn |
Bibliography | uulm | uulm.bibliographie |
xmlui.metadata.uulm.OAfunding | Open-Access-Förderung durch die Universität Ulm | uulm.OAfunding |