Show simple item record

AuthorRach, Niklasdc.contributor.author
AuthorMatsuda, Yukidc.contributor.author
AuthorUltes, Stefandc.contributor.author
AuthorMinker, Wolfgangdc.contributor.author
AuthorYasumoto, Keichidc.contributor.author
Date of accession2021-05-26T13:13:27Zdc.date.accessioned
Available in OPARU since2021-05-26T13:13:27Zdc.date.available
Date of first publication2021-01-13dc.date.issued
AbstractInformation about a subjective user opinion towards an argument is crucial for argumentative systems in order to present appropriate content and adapt their behaviour to the individual user. However, requesting explicit feedback regarding the discussed arguments is often impractical and can hinder the interaction. To address this issue, we investigate the automatic recognition of user opinions towards arguments that are presented by means of a virtual avatar from social signals.We focus on two different user opinion categories (convincing and interesting) and two different types of social signals (facial expressions and eye movement). The recognition is addressed as a supervised learning problem and realized using the argument search evaluation data discussed in previous work. The overall performance is compared to a human annotation on a subset of the collected data. The results show that the machine learning performance is similar to human performance in both recognition tasks.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseCC BY 4.0 Internationaldc.rights
Link to license texthttps://creativecommons.org/licenses/by/4.0/dc.rights.uri
KeywordAnnotationsdc.subject
KeywordEstimationdc.subject
KeywordUsabilitydc.subject
KeywordComputational argumentationdc.subject
Keywordargument quality estimationdc.subject
Keywordargumentative dialogue systemsdc.subject
Keywordsocial signal extractiondc.subject
Dewey Decimal GroupDDC 000 / Computer science, information & general worksdc.subject.ddc
Dewey Decimal GroupDDC 620 / Engineering & allied operationsdc.subject.ddc
LCSHTask analysisdc.subject.lcsh
LCSHSearch enginesdc.subject.lcsh
LCSHMachine learningdc.subject.lcsh
TitleEstimating subjective argument quality aspects from social signals in argumentative dialogue systemsdc.title
Resource typeWissenschaftlicher Artikeldc.type
VersionpublishedVersiondc.description.version
DOIhttp://dx.doi.org/10.18725/OPARU-37680dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-37742-7dc.identifier.urn
GNDLernaufgabedc.subject.gnd
GNDSchätzungdc.subject.gnd
GNDAffective Computingdc.subject.gnd
GNDMaschinelles Lernendc.subject.gnd
GNDBenutzerfreundlichkeitdc.subject.gnd
FacultyFakultät für Ingenieurwissenschaften, Informatik und Psychologieuulm.affiliationGeneral
InstitutionInstitut für Nachrichtentechnikuulm.affiliationSpecific
Peer reviewjauulm.peerReview
DCMI TypeTextuulm.typeDCMI
CategoryPublikationenuulm.category
In cooperation withNara Institute of Science and Technology (NAIST)uulm.cooperation
In cooperation withJapan Science and Technology Agency (JST)uulm.cooperation
In cooperation withMercedes-Benz Sindelfingen Research & Developmentuulm.cooperation
DOI of original publication10.1109/ACCESS.2021.3051526dc.relation1.doi
Source - Title of sourceIEEE Accesssource.title
Source - Place of publicationInstitute of Electrical and Electronics Engineerssource.publisher
Source - Volume9source.volume
Source - Year2021source.year
Source - From page11610source.fromPage
Source - To page11621source.toPage
Source - eISSN2169-3536source.identifier.eissn
Bibliographyuulmuulm.bibliographie
xmlui.metadata.uulm.OAfundingOpen-Access-Förderung durch die Universität Ulmuulm.OAfunding


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record