Estimating subjective argument quality aspects from social signals in argumentative dialogue systems

peer-reviewed
Erstveröffentlichung
2021-01-13Authors
Rach, Niklas
Matsuda, Yuki
Ultes, Stefan
Minker, Wolfgang
Yasumoto, Keichi
Wissenschaftlicher Artikel
Published in
IEEE Access ; 9 (2021). - S. 11610-11621. - eISSN 2169-3536
Link to original publication
https://dx.doi.org/10.1109/ACCESS.2021.3051526Faculties
Fakultät für Ingenieurwissenschaften, Informatik und PsychologieInstitutions
Institut für NachrichtentechnikExternal cooperations
Nara Institute of Science and Technology (NAIST)Japan Science and Technology Agency (JST)
Mercedes-Benz Sindelfingen Research & Development
Document version
published version (publisher's PDF)Abstract
Information about a subjective user opinion towards an argument is crucial for argumentative
systems in order to present appropriate content and adapt their behaviour to the individual user. However,
requesting explicit feedback regarding the discussed arguments is often impractical and can hinder the
interaction. To address this issue, we investigate the automatic recognition of user opinions towards
arguments that are presented by means of a virtual avatar from social signals.We focus on two different user
opinion categories (convincing and interesting) and two different types of social signals (facial expressions
and eye movement). The recognition is addressed as a supervised learning problem and realized using the
argument search evaluation data discussed in previous work. The overall performance is compared to a
human annotation on a subset of the collected data. The results show that the machine learning performance
is similar to human performance in both recognition tasks.
Publication funding
Open-Access-Förderung durch die Universität Ulm
Subject headings
[GND]: Lernaufgabe | Schätzung | Affective Computing | Maschinelles Lernen | Benutzerfreundlichkeit[LCSH]: Task analysis | Search engines | Machine learning
[Free subject headings]: Annotations | Estimation | Usability | Computational argumentation | argument quality estimation | argumentative dialogue systems | social signal extraction
[DDC subject group]: DDC 000 / Computer science, information & general works | DDC 620 / Engineering & allied operations
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-37680
Rach, Niklas et al. (2021): Estimating subjective argument quality aspects from social signals in argumentative dialogue systems. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-37680
Citation formatter >