• English
    • Deutsch
  • English 
    • English
    • Deutsch
  • Login
View Item 
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating subjective argument quality aspects from social signals in argumentative dialogue systems

Thumbnail
09321384.pdf (1.285Mb)

peer-reviewed

Erstveröffentlichung
2021-01-13
Authors
Rach, Niklas
Matsuda, Yuki
Ultes, Stefan
Minker, Wolfgang
Yasumoto, Keichi
Wissenschaftlicher Artikel


Published in
IEEE Access ; 9 (2021). - S. 11610-11621. - eISSN 2169-3536
Link to original publication
https://dx.doi.org/10.1109/ACCESS.2021.3051526
Faculties
Fakultät für Ingenieurwissenschaften, Informatik und Psychologie
Institutions
Institut für Nachrichtentechnik
External cooperations
Nara Institute of Science and Technology (NAIST)
Japan Science and Technology Agency (JST)
Mercedes-Benz Sindelfingen Research & Development
Document version
published version (publisher's PDF)
Abstract
Information about a subjective user opinion towards an argument is crucial for argumentative systems in order to present appropriate content and adapt their behaviour to the individual user. However, requesting explicit feedback regarding the discussed arguments is often impractical and can hinder the interaction. To address this issue, we investigate the automatic recognition of user opinions towards arguments that are presented by means of a virtual avatar from social signals.We focus on two different user opinion categories (convincing and interesting) and two different types of social signals (facial expressions and eye movement). The recognition is addressed as a supervised learning problem and realized using the argument search evaluation data discussed in previous work. The overall performance is compared to a human annotation on a subset of the collected data. The results show that the machine learning performance is similar to human performance in both recognition tasks.
Publication funding
Open-Access-Förderung durch die Universität Ulm
Subject headings
[GND]: Lernaufgabe | Schätzung | Affective Computing | Maschinelles Lernen | Benutzerfreundlichkeit
[LCSH]: Task analysis | Search engines | Machine learning
[Free subject headings]: Annotations | Estimation | Usability | Computational argumentation | argument quality estimation | argumentative dialogue systems | social signal extraction
[DDC subject group]: DDC 000 / Computer science, information & general works | DDC 620 / Engineering & allied operations
License
CC BY 4.0 International
https://creativecommons.org/licenses/by/4.0/

Metadata
Show full item record

DOI & citation

Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-37680

Rach, Niklas et al. (2021): Estimating subjective argument quality aspects from social signals in argumentative dialogue systems. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-37680
Citation formatter >



Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsPersonsInstitutionsPublication typesUlm SerialsDewey Decimal ClassesEU projects UlmDFG projects UlmOther projects Ulm

My Account

LoginRegister

Statistics

View Usage Statistics

Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement