Show simple item record

AuthorAhmed, Shameemdc.contributor.author
AuthorGosh, Kushal Kantidc.contributor.author
AuthorBera, Suman Kumardc.contributor.author
AuthorSchwenker, Friedhelmdc.contributor.author
AuthorSarkar, Ramdc.contributor.author
Date of accession2021-03-03T13:42:57Zdc.date.accessioned
Available in OPARU since2021-03-03T13:42:57Zdc.date.available
Date of first publication2020-09-14dc.date.issued
AbstractImage contrast enhancement is a very important phase for processing of digital images. The main goal of image contrast enhancement is to improve the visual quality by improving the contrast level of images which were distorted or degraded due to casual acquisition of images. The most popular method to perform this task is Histogram Equalization (HE). However, the exhaustive approach taken during HE is an algorithmically complex task. In this paper, we have considered image contrast enhancement as an optimization problem, where a new meta-heuristic algorithm, called Barnacles Mating Optimizer (BMO) is used to find the optimal solution for this optimization problem. A grey level mapping technique is used here to convert an image to a solution of the optimization problem. The algorithm has been evaluated on five publicly available datasets: Kodak, MIT-Adobe FiveK images, H-DIBCO 2016, and H-DIBCO 2018. It is also applied on some standard images like Boy, Lena, Lifting body and Zebra. The obtained results clearly display the effectiveness of the proposed method. The results obtained on the Kodak images are compared with many state-of-the-art methods present in the literature, and the comparison proves the superiority of the proposed method. To test the applicability of BMO in solving real world problems, we have applied it as a pre-processing step in binarization of H-DIBCO 2016 and H-DIBCO 2018 datasets. The source code of this work is available at https://github.com/ahmed-shameem/Projects.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseCC BY 4.0 Internationaldc.rights
Link to license texthttps://creativecommons.org/licenses/by/4.0/dc.rights.uri
KeywordBarnacle Mating Optimizerdc.subject
KeywordImage contrast enhancementdc.subject
KeywordMeta-heuristicdc.subject
KeywordEvolutionary algorithmdc.subject
KeywordDIBCOdc.subject
Dewey Decimal GroupDDC 004 / Data processing & computer sciencedc.subject.ddc
LCSHImage processing; Digital techniquesdc.subject.lcsh
LCSHMathematical optimizationdc.subject.lcsh
TitleGray level image contrast enhancement using barnacles mating optimizerdc.title
Resource typeWissenschaftlicher Artikeldc.type
VersionpublishedVersiondc.description.version
DOIhttp://dx.doi.org/10.18725/OPARU-35676dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-35738-5dc.identifier.urn
GNDBildverarbeitungdc.subject.gnd
FacultyFakultät für Ingenieurwissenschaften, Informatik und Psychologieuulm.affiliationGeneral
InstitutionInstitut für Neuroinformatikuulm.affiliationSpecific
Peer reviewjauulm.peerReview
DCMI TypeTextuulm.typeDCMI
CategoryPublikationenuulm.category
In cooperation withJadavpur Universityuulm.cooperation
DOI of original publication10.1109/ACCESS.2020.3024095dc.relation1.doi
Source - Title of sourceIEEE Accesssource.title
Source - Place of publicationInstitute of Electrical and Electronics Engineerssource.publisher
Source - Volume8source.volume
Source - Year2020source.year
Source - eISSN2169-3536source.identifier.eissn
WoS000572904500001uulm.identifier.wos
Bibliographyuulmuulm.bibliographie
xmlui.metadata.uulm.OAfundingOpen-Access-Förderung durch die Universität Ulmuulm.OAfunding
xmlui.metadata.uulm.OAfundingGefördert vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberguulm.OAfunding


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record