Radial basis function networks for convolutional neural networks to learn similarity distance metric and improve interpretability
Wissenschaftlicher Artikel
Authors
Amirian, Mohammadreza
Schwenker, Friedhelm
Faculties
Fakultät für Ingenieurwissenschaften, Informatik und PsychologieInstitutions
Institut für NeuroinformatikExternal cooperations
ZHAW Zürcher Hochschule für Angewandte WissenschaftenPublished in
IEEE Access ; 8 (2020). - eISSN 2169-3536
Link to original publication
https://dx.doi.org/10.1109/ACCESS.2020.3007337Peer review
ja
Document version
publishedVersion
Abstract
Radial basis function neural networks (RBFs) are prime candidates for pattern classification
and regression and have been used extensively in classical machine learning applications. However, RBFs have not been integrated into contemporary deep learning research and computer vision using conventional convolutional neural networks (CNNs) due to their lack of adaptability with modern architectures. In this paper, we adapt RBF networks as a classifier on top of CNNs by modifying the training process and introducing a new activation function to train modern vision architectures end-to-end for image classification. The specific architecture of RBFs enables the learning of a similarity distance metric to compare and find similar and dissimilar images. Furthermore, we demonstrate that using an RBF classifier on top of any CNN architecture provides new human-interpretable insights about the decision-making process of the models. Finally, we successfully apply RBFs to a range of CNN architectures and evaluate the results on benchmark computer vision datasets.
Funding information
Gefördert vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
Subject Headings
Überwachtes Lernen [GND]Unüberwachtes Lernen [GND]
Radial basis functions [LCSH]
Supervised learning (Machine learning) [LCSH]
Keywords
Radial basis function neural networks (RBFs); Convolutional neural networks (CNNs); Unsupervised learning; Similarity distance metricDewey Decimal Group
DDC 004 / Data processing & computer scienceMetadata
Show full item recordCitation example
Amirian, Mohammadreza; Schwenker, Friedhelm (2020): Radial basis function networks for convolutional neural networks to learn similarity distance metric and improve interpretability. Open Access Repositorium der Universität Ulm. http://dx.doi.org/10.18725/OPARU-34098