• English
    • Deutsch
View Item 
  •   OPARU Home
  • Fakultät für Ingenieurwissenschaften, Informatik und Psychologie
  • Publikationen
  • View Item
  •   OPARU Home
  • Fakultät für Ingenieurwissenschaften, Informatik und Psychologie
  • Publikationen
  • View Item
  • English 
    • English
    • Deutsch
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

LMB filter based tracking allowing for multiple hypotheses in object reference point association

Thumbnail
Download
MAHyp_op.pdf (676.1Kb)
Erstveröffentlichung
2020-10-26
DOI
10.18725/OPARU-33915
Beitrag zu einer Konferenz


Authors
Herrmann, Martin
Piroli, Aldi
Strohbeck, Jan
Müller, Johannes
Buchholz, Michael
Faculties
Fakultät für Ingenieurwissenschaften, Informatik und Psychologie
Institutions
Institut für Mess-, Regel- und Mikrotechnik
Published in
2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) ; 2020 (2020). - S. 197-203. - ISBN 978-1-7281-6423-6. - eISSN 978-1-7281-6422-9
Link to original publication
https://dx.doi.org/10.1109/MFI49285.2020.9235251
Peer review
ja
Document version
acceptedVersion
Conference
2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2020-09-14 - 2020-09-16, Karlsruhe (online only)
License
Standard
https://oparu.uni-ulm.de/xmlui/license_v3
Abstract
Autonomous vehicles need precise knowledge on dynamic objects in their surroundings. Especially in urban areas with many objects and possible occlusions, an infrastructure system based on a multi-sensor setup can provide the required environment model for the vehicles. Previously, we have published a concept of object reference points (e.g. the corners of an object), which allows for generic sensor "plug and play" interfaces and relatively cheap sensors. This paper describes a novel method to additionally incorporate multiple hypotheses for fusing the measurements of the object reference points using an extension to the previously presented Labeled Multi-Bernoulli (LMB) filter. In contrast to the previous work, this approach improves the tracking quality in the cases where the correct association of the measurement and the object reference point is unknown. Furthermore, this paper identifies options based on physical models to sort out inconsistent and unfeasible associations at an early stage in order to keep the method computationally tractable for real-time applications. The method is evaluated on simulations as well as on real scenarios. In comparison to comparable methods, the proposed approach shows a considerable performance increase, especially the number of non-continuous tracks is decreased significantly.
Funding information
MEC-View / BMWi [19A16010I]
EU Project
ICT4CART / ICT Infrastructure for Connected and Automated Road Transport / EC / H2020 / 768953
Subject Headings
Autonomes Fahrzeug [GND]
Automobile driving--Automation [LCSH]
Keywords
LMB-Filter; Multi-Object Tracking
Dewey Decimal Group
DDC 620 / Engineering & allied operations

Metadata
Show full item record

Citation example

Herrmann, Martin et al. (2020): LMB filter based tracking allowing for multiple hypotheses in object reference point association. Open Access Repositorium der Universität Ulm. http://dx.doi.org/10.18725/OPARU-33915

Other citation formats



About OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsFacultiesInstitutionsPersonsResource typesUlm SerialsDewey Decimal ClassesFundingThis CollectionFacultiesInstitutionsPersonsResource typesUlm SerialsDewey Decimal ClassesFunding

My Account

LoginRegister

Statistics

View Usage Statistics

About OPARU | Contact Us
Impressum | Privacy statement