• English
    • Deutsch
  • English 
    • English
    • Deutsch
  • Login
View Item 
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Einbettungen und Verbiegungen hyperbolischer Flächen

Thumbnail
vts_9774_14859.pdf (1.354Mb)
189 S.
Veröffentlichung
2015-11-10
Authors
Stoffers, Frédéric
Dissertation


Faculties
Fakultät für Mathematik und Wirtschaftswissenschaften
Abstract
In this thesis we solve embedding problems of two dimensional hyperbolic Riemannian metrics with three dimensional Euclidean space as target space under two different geometrical initial conditions. By using the Heinz-Lewy-method of introducing asymptotic parameters into the second fundamental form of an a priori given surface the embedding problem is reduced to solving the Darboux system for the parameter transform which is of second order and of semilinear hyperbolic (due to the hyperbolicity of the metric) type. In the case of a metric with three times continuously differentiable coefficient functions with third derivatives being Hölder-continuous that system is solved by an iteration process and a compactness argument using a priori estimates for solutions of the corresponding linear system. In the case of a metric with four times continuously differentiable coefficient functions the system can be solved more easily by means of the contraction mapping principle yielding not only existence but also uniqueness of the solution. In this situation we also prove several bending results for hyperbolic surfaces by introducing appropriately a real deformation parameter in the Darboux system and using uniqueness of the solution which allows to reconstruct the initial surfaces. Finally we deal with infinitesimal bendings leading to linear systems of partial differential equations of first order and prove a rigidity result for hyperbolic surfaces under the geometric restriction of keeping a nonasymptotic curve in the surface fixed.
Date created
2015
Subject headings
[GND]: Charakteristikenverfahren | Isometrische Einbettung | Metrik <Mathematik>
[LCSH]: Embeddings (Mathematics)
[Free subject headings]: Asymptotenlinienparameter | Infinitesimale Verbiegung | Quasilineare hyperbolische partielle Differentialgleichung | Verbiegung von Flächen
[DDC subject group]: DDC 510 / Mathematics
License
Standard
https://oparu.uni-ulm.de/xmlui/license_v3

Metadata
Show full item record

DOI & citation

Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-3286

Stoffers, Frédéric (2015): Einbettungen und Verbiegungen hyperbolischer Flächen. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-3286
Citation formatter >



Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsPersonsInstitutionsPublication typesUlm SerialsDewey Decimal ClassesEU projects UlmDFG projects UlmOther projects Ulm

My Account

LoginRegister

Statistics

View Usage Statistics

Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement