Show simple item record

AuthorDier, Dominikdc.contributor.author
Date of accession2016-03-15T10:40:21Zdc.date.accessioned
Available in OPARU since2016-03-15T10:40:21Zdc.date.available
Year of creation2014dc.date.created
AbstractForm methods are a useful and elegant framework to study second order elliptic operators in divergence form. They can be used to describe such operators including various boundary conditions, such as Dirichlet, Neumann and Robin boundary conditions. In the autonomous case Cauchy problems of the form u´(t) + Au(t) = f (t), u(0) = u_0, where A is associated with a form a, are well studied. The subject of this thesis are non-autonomous Cauchy problems associated with a form a(t) depending on t. We study regularity, invariance of convex sets and asymptotics.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseStandarddc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/license_v3dc.rights.uri
KeywordInvariance of closed convex setsdc.subject
KeywordMaximal regularitydc.subject
KeywordNon-autonomous evolution equationsdc.subject
KeywordSesquilinear formsdc.subject
Dewey Decimal GroupDDC 510 / Mathematicsdc.subject.ddc
LCSHInvariance (Mathematics)dc.subject.lcsh
TitleNon-autonomous Cauchy problems governed by forms: maximal regularity and invariancedc.title
Resource typeDissertationdc.type
DOIhttp://dx.doi.org/10.18725/OPARU-3270dc.identifier.doi
PPN818605057dc.identifier.ppn
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-vts-94230dc.identifier.urn
GNDEvolutionsgleichungdc.subject.gnd
GNDRegularitätdc.subject.gnd
GNDSesquilinearformdc.subject.gnd
FacultyFakultät für Mathematik und Wirtschaftswissenschaftenuulm.affiliationGeneral
Date of activation2015-02-11T08:10:20Zuulm.freischaltungVTS
Peer reviewneinuulm.peerReview
Shelfmark print versionW: W-H 13.992uulm.shelfmark
DCMI TypeTextuulm.typeDCMI
VTS ID9423uulm.vtsID
CategoryPublikationenuulm.category
Bibliographyuulmuulm.bibliographie


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record