• English
    • Deutsch
Dokumentanzeige 
  •   OPARU Startseite
  • Fakultät für Ingenieurwissenschaften, Informatik und Psychologie
  • Publikationen
  • Dokumentanzeige
  •   OPARU Startseite
  • Fakultät für Ingenieurwissenschaften, Informatik und Psychologie
  • Publikationen
  • Dokumentanzeige
  • Deutsch 
    • English
    • Deutsch
  • Einloggen
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intersection-based road user tracking using a classifying multiple-model PHD filter

Thumbnail
Download
vts_9902_15087.pdf (9.900Mb)
196 S.
 
Veröffentlichung
2016-02-03
DOI
10.18725/OPARU-3257

Dissertation

Autoren
Meißner, Daniel Alexander
Fakultäten
Fakultät für Ingenieurwissenschaften und Informatik
Lizenz
Standard (ohne Print-On-Demand)
https://oparu.uni-ulm.de/xmlui/license_opod_v1
Zusammenfassung
Due to an increasing number of traffic accident fatalities at intersections, the prevention of traffic accidents at intersection attracts more and more attention in public as well as in research. Thus, a busy public intersection in Aschaffenburg, Germany was equipped with an intersection perception system, which contains multiple laserscanners and video cameras as well as data processing units. The focus of this thesis lays on the tracking of road users at traffic intersections. Thus, a tracking approach is required which is able to handle multiple objects detected by multiple classifying sensors with different field of views. Due to the topdown modeling of the multi-object tracking problem and the availability of efficient implementations, a Gaussian mixture probability hypothesis density (GM-PHD) filter is used. Based on this the classifying multiple-model probability hypothesis density (CMMPHD) filter is developed which facilitates to track road users of different type with its appropriate motion model and classify them. The classification is able to distinguish pedestrians, bikes, cars, and trucks. Therefore, features of the measurements and of the tracks are used. To model the object class of each track a basic belief assignment (BBA) of the Dempster-Shafer theory of evidence (DST) is exploited. Based on the estimated objects’ classes the objects’ motion model transition probabilities of the multiple model filter are adapted. To reliably recognise the road users in their varying appearances, laserscanners and video cameras are used. The fusion of the sensor measurements with the multi-sensor CMMPHD filter is realized by the introduction of the sensor individual modeling of the recognition abilities and the detection probability. In the end, the developed methods to recognize and track road users at traffic intersections are evaluated with real-world sensor and reference data.
Erstellung / Fertigstellung
2016
Normierte Schlagwörter
Datenfusion [GND]
Dempster-Shafer-Theorie [GND]
Laserscanner [GND]
Multisensor [GND]
Dempster-Shafer theory of evidence [LCSH]
Scanning systems [LCSH]
Traffic safety [LCSH]
Schlagwörter
Intersection perception; Multi-object tracking; Multi-sensor fusion; PHD filter; Random finite sets
DDC-Sachgruppe
DDC 620 / Engineering & allied operations

Metadata
Zur Langanzeige

Zitiervorlage

Meißner, Daniel Alexander (2016): Intersection-based road user tracking using a classifying multiple-model PHD filter. Open Access Repositorium der Universität Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-3257

Weitere Zitierstile



Informationen zu OPARU | Kontakt | Feedback
Impressum | Datenschutzerklärung
 

 

Erweiterte Suche

Stöbern

Gesamter BestandBereiche & SammlungenFakultätenInstitutionenPersonenRessourcentypenUlmer Reihen & ZeitschriftenDDC-SachgruppenFörderinformationenAusgewählte SammlungFakultätenInstitutionenPersonenRessourcentypenUlmer Reihen & ZeitschriftenDDC-SachgruppenFörderinformationen

Mein Benutzerkonto

EinloggenRegistrieren

Statistik

Benutzungsstatistik

Informationen zu OPARU | Kontakt | Feedback
Impressum | Datenschutzerklärung