Show simple item record

AuthorGasanova, Tatianadc.contributor.author
Date of accession2016-03-15T10:40:05Zdc.date.accessioned
Available in OPARU since2016-03-15T10:40:05Zdc.date.available
Year of creation2015dc.date.created
AbstractWritten text is a form of communication that represents language (speech) using signs and symbols. For a given language text depends on the same structures as speech (vocabulary, grammar and semantics) and the structured system of signs and symbols (formal alphabet). Written text has always been an instrument of exchanging information, recording history, spreading knowledge, maintaining financial accounts and formation of legal systems. With the development of computers and Internet the amount of textual information in digital form has dramatically grown. There is an increasing need to automatically process this information for variety of tasks related to text processing such as information retrieval, machine translation, question answering, topic categorization and topic segmentation, sentiment analysis etc. Many important text processing tasks fall into the field of text classification. This thesis addresses the development and evaluation of novel text preprocessing methods, which combine supervised and unsupervised learning models in order to reduce dimensionality of the feature space and improve the classification performance. Metaheuristic approaches for Support Vector Machine and Artificial Neural Network generation and parameters optimization are modified and applied for text classification and compared with other state-of-the-art methods using different text representations.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseStandarddc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/license_v3dc.rights.uri
KeywordText classificationdc.subject
KeywordText preprocessingdc.subject
Dewey Decimal GroupDDC 000 / Computer science, information & general worksdc.subject.ddc
LCSHText processing (Computer science)dc.subject.lcsh
TitleNovel methods for text preprocessing and classificationdc.title
Resource typeDissertationdc.type
DOIhttp://dx.doi.org/10.18725/OPARU-3242dc.identifier.doi
PPN833595954dc.identifier.ppn
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-vts-96473dc.identifier.urn
GNDAutomatische Klassifikationdc.subject.gnd
FacultyFakultät für Ingenieurwissenschaften und Informatikuulm.affiliationGeneral
Date of activation2015-08-18T11:30:55Zuulm.freischaltungVTS
Peer reviewneinuulm.peerReview
Shelfmark print versionW: W-H 14.328uulm.shelfmark
DCMI TypeTextuulm.typeDCMI
VTS ID9647uulm.vtsID
CategoryPublikationenuulm.category
Bibliographyuulmuulm.bibliographie


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record