• English
    • Deutsch
View Item 
  •   OPARU Home
  • Fakultät für Mathematik und Wirtschaftswissenschaften
  • Publikationen
  • View Item
  •   OPARU Home
  • Fakultät für Mathematik und Wirtschaftswissenschaften
  • Publikationen
  • View Item
  • English 
    • English
    • Deutsch
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cycle spectra of graphs

Thumbnail
Download
vts_8486_12502.pdf (877.0Kb)
104 S.
 
Veröffentlichung
2013-06-06
DOI
10.18725/OPARU-2549
Dissertation


Authors
Müttel, Janina
Faculties
Fakultät für Mathematik und Wirtschaftswissenschaften
License
Standard
https://oparu.uni-ulm.de/xmlui/license_v3
Abstract
This thesis contains several new results about cycle spectra of graphs. The cycle spectrum of a graph G is the set of lengths of cycles in G. We focus on conditions which imply a rich cycle spectrum. We show a lower bound for the size of the cycle spectrum of cubic Hamiltonian graphs that do not contain a fixed subdivision of a claw as an induced subgraph. Furthermore, we consider cycle spectra in squares of graphs. We give a new shorter proof for a theorem of Fleischner which is an essential tool in this context. For a connected graph G, we also find a lower bound on the circumference of the square of G, which implies a bound for the size of the cycle spectrum of the square of G. Finally, we prove new Ramsey-type results about cycle spectra: We consider edge-colored complete graphs and investigate the set of lengths of cycles containing only edges of certain subsets of the colors.
Date created
2013
Subject Headings
Hamilton-Kreis [GND]
Ramsey-Zahl [GND]
Hamiltonian graph theory [LCSH]
Ramsey numbers [LCSH]
Keywords
Caterpillar; Circumference; Cycle length; Cycle spectrum; Fleischner´s theorem; Hamiltonian cycle; Pancyclic graphs; Square of a graph; Subdivided claw
Dewey Decimal Group
DDC 510 / Mathematics

Metadata
Show full item record

Citation example

Müttel, Janina (2013): Cycle spectra of graphs. Open Access Repositorium der Universität Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-2549

Other citation formats



About OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsFacultiesInstitutionsPersonsResource typesUlm SerialsDewey Decimal ClassesFundingThis CollectionFacultiesInstitutionsPersonsResource typesUlm SerialsDewey Decimal ClassesFunding

My Account

LoginRegister

Statistics

View Usage Statistics

About OPARU | Contact Us
Impressum | Privacy statement