Show simple item record

AuthorToor, Farazdc.contributor.author
Date of accession2016-03-15T09:04:11Zdc.date.accessioned
Available in OPARU since2016-03-15T09:04:11Zdc.date.available
Year of creation2012dc.date.created
AbstractIn this work, new techniques to improve the performance of exponential integrators are proposed. These new techniques are then combined to form an efficient algorithm for the exponential method of lines. Some of the theoretical aspects of this method are also studied within the framework of semigroup theory and its applications to the Cauchy problem. Unlike straight forward implementation of exponential integrators, the proposed algorithm avoids constructing a new Krylov subspace in each internal stage and for each time step by extracting an initial approximation from an already available Krylov subspace. If the initial approximation turns out to be unsatisfactory, then a new Krylov subspace is generated for its refinement. This is accomplished by developing a block version of the thick restarting Lanczos algorithm. Results and techniques to detect and prevent loss of orthogonality among the Lanczos blocks are extended from their counterparts for standard Lanczos algorithm. Moreover, a-posteriori error estimates for restarting procedure as well as sequential processing of right-hand sides are also derived. Our improvements are numerically validated for a set of test problems.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseStandarddc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/license_v3dc.rights.uri
KeywordExponential integratorsdc.subject
KeywordMethod of linesdc.subject
KeywordReaction-diffusion problemsdc.subject
Dewey Decimal GroupDDC 510 / Mathematicsdc.subject.ddc
LCSHCauchy problemdc.subject.lcsh
TitleA study of the exponential method of lines for a class of parabolic problemsdc.title
Resource typeDissertationdc.type
DOIhttp://dx.doi.org/10.18725/OPARU-2545dc.identifier.doi
PPN736666060dc.identifier.ppn
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-vts-83752dc.identifier.urn
GNDLinienmethodedc.subject.gnd
FacultyFakultät für Mathematik und Wirtschaftswissenschaftenuulm.affiliationGeneral
Date of activation2013-02-01T14:44:28Zuulm.freischaltungVTS
Peer reviewneinuulm.peerReview
Shelfmark print versionW: W-H 13.203uulm.shelfmark
DCMI TypeTextuulm.typeDCMI
VTS ID8375uulm.vtsID
CategoryPublikationenuulm.category
Bibliographyuulmuulm.bibliographie


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record